
1TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

TI Designs
High Availability Industrial High Speed Counter (HSC) /
Pulse Train Output (PTO)

Design Overview
This TI design provides a reference solution (firmware
and test platform) for two different industrial IO
functions related to motion control: High Speed
Counter (HSC) and Pulse Train Output (PTO). The
design is based on a microcontroller platform that is
suitable for use in industrial applications where high
availability and/or functional safety are also important
requirements.

Design Resources

TIDM-HAHSCPTO Tool Folder Containing Design Files
LAUNCHXL2-RM57L Tool Folder
RM57L843 Product Folder
DP83630 Product Folder
INA210 Product Folder
LM26420 Product Folder
LM4040D20 Product Folder
TM4C129ENCPDT Product Folder
TPD4E004 Product Folder
TPS2553 Product Folder
TPS3106K33 Product Folder

ASK Our E2E Experts
WEBENCH® Calculator Tools

Design Features
• High speed (up to 400 KHz) 32-bit HSC counter

with two counter input pins, four auxiliary input
pins, two input capture registers, and two compare
output pins.

• PTO generates output pulse trains and trapezoidal
profiles up to 100 KHz with 9.1 ns resolution.

• Count/Dir, Clockwise/Counter Clockwise, and
Quadrature Modes.

• Reduces CPU load and interrupt latency
requirements by operating autonomously on the
N2HET Timing Coprocessor.

• Reduces system cost by replacing FPGA or ASIC.
• Includes N2HET firmware and test platform, as well

as host CPU driver functions.

Featured Applications
• Factory Automation and Process Control
• Programmable Logic Controllers (PLC)
• Motor and Stepper Drives
• Motion control applications requiring high

availability or functional safety.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
https://www.ti.com/tool/TIDM-HAHSCPTO
https://www.ti.com/tool/launchxl2-rm57l
https://www.ti.com/product/RM57L843
https://www.ti.com/product/DP83630
https://www.ti.com/product/INA210
https://www.ti.com/product/LM26420
https://www.ti.com/product/LM4040D20
https://www.ti.com/product/TM4C129ENCPDT
https://www.ti.com/product/TPD4E004
https://www.ti.com/product/TPS2553
https://www.ti.com/product/TPS3106K33
http://e2e.ti.com
http://e2e.ti.com/
http://e2e.ti.com/support/development_tools/webench_design_center/default.aspx

Key System Specifications www.ti.com

2 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

1 Key System Specifications

(1) Parameter directly from RM57L843 datasheet. In case of conflicts the datasheet value supersedes the values listed here.

Table 1. High Speed Counter (HSC) Specifications

PARAMETER SPECIFICATION DETAILS
Number of Counting Channels 2
Physical Inputs Per Channel 6 2 Counting Plus 4 Auxiliary Inputs

Physical Outputs Per Channel 2
Input Voltage Range 0 to 3.3 V (1)

High Level Input Voltage (Min) 2.0 V (1)

Low Level Input Voltage (Max) 0.8 V (1)

High Level Output Voltage (Min) 3.0 V @ 50 µA (1)

Low Level Output Voltage (Max) 0.2 V @ 50 µA (1)

Input Frequency (Max) 400KHz

Input Filtering
Inputs INA, INB 0 - 9.3 µs HW Filtering - 10 bit counter

Inputs INW, INX, INY, INZ 0, 1.16 us, 2.32 µs, ... Programmable filter length to > 30
seconds in 1.16 µs increments.

Counter Modes
Count / Direction x1, x2

Clockwise / Counter Clockwise x1, x2
Quadrature x1, x2

Counter Range 0 to 232-1 Counts Counter Min, Max are programmable.
Counter Behavior at Min, Max Limits Rollover or Saturation Counter marked invalid on saturation.

Counter Hysteresis (On Direction Change) 0 to 225- 1 Counts Programmable for each direction
change.

Counter Reset Optional, Programmable 32-Bit Reset
Value

Programmable Triggering For each
Function based on Software or

Auxiliary Input (Edge/Level) Events.
Counter Sync Optional, Programmable 32-Bit Sync

Value
Counter Enable Optional

Capture Registers 2x 32-Bit
Output Compare Registers 4x 32-Bit 2 Compare Registers / Output Pin

N2HET Resource
Usage

Memory < 128 Words Version 1.0.0: 107
Execution Cycles < 128 Cycles/Loop (max) Version 1.0.0: max 119 cycles/loop

(1) Parameter directly from RM57L843 datasheet. In case of conflicts the datasheet value supersedes the values listed here.

Table 2. Pulse Train Output (PTO) Specifications

PARAMETER SPECIFICATION DETAILS
Number of Physical Outputs 2

High Level Output Voltage (Min) 3.0 V @ 50 µA (1)

Low Level Output Voltage (Max) 0.2 V @ 50 µA (1)

Output Frequency (Max) 100 KHz (2 PTOs /N2HET. 200 KHz if 1
PTO/N2HET)

Output Modes
Count / Direction

Clockwise / Counter Clockwise
Quadrature

Output Step Direction Forward, Reverse, Delay Delay: Time Delay without Stepping

Output Acceleration Linear Accelerate, Linear Decelerate,
Constant Speed

Steps Per Command 0 - 1M

N2HET Resource
Usage

Memory < 80 Words v1.0.0: 79 Words
Execution Cycles < 64 Cycles / Loop v1.0.0: max 57 cycles/loop

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
https://www.ti.com/lit/pdf/spns215
https://www.ti.com/lit/pdf/spns215

www.ti.com System Description

3TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

(1) IEC61508 SIL3 certificate for the RM57L843 device is expected before the end of 2016, certificates for other devices in the Hercules
family are available today.

2 System Description
The High Speed Counter and Pulse Train Output modules can be used together as the basis of a motion
control system. Figure 1 shows an example of such a system. The pulse train output module is used to
generate a motion profile that drives the motor and conveyer. The actual speed and position of the system
is sensed by an incremental encoder and tracked by the high speed counter through its main counter
inputs INA, INB. The auxiliary inputs of the HSC can be used for capturing the encoder position output
when a discrete input switch is closed as shown in this example, or an auxiliary input could be to used
perform a homing function where the homing signal comes from a switched input. The HSC also includes
two output compare pins that can be used to trigger turn on and off an actuator within a range of count
values.

Figure 1. Example Motion Control System Using HSC & PTO Modules

2.1 RM57L843ZWTT with Dual N2HET Timing Coprocessors
The RM57L843 device (Figure 2) is part of the Hercules™ RM series of high-performance ARM® Cortex®-
R-based MCUs. This product line is supported with SafeTI™ Design Packages for Functional Safety
Applications. Comprehensive documentation, tools, and software are available to assist in the
development of IEC 61508 functional safety applications, including:
• Safety Manual
• Detailed Safety Analysis Report with FMEDA (request form)
• Safety Analysis Report Summary (request form)
• Hercules SafeTI Diagnostic Library
• SafeTI Compliance Support Package for Hercules Diagnostic Library
• SafeTI Compliance Support Package for HALCoGen (Hardware Abstraction Layer Code Generator)
• SafeTI™ Compiler Qualification Kit for Hercules™ MCUs
• Standards Compliance for SafeTI Products and/or Processes (1)

The RM57L843 device has on-chip diagnostic features including: dual CPUs in lockstep, Built-In Self-Test
(BIST) logic for CPU, the N2HET coprocessors, the for on-chip SRAMs. The L1 caches, L2 Flash, and L2
SRAM memories are ECC protected. The device also supports ECC or parity protection on peripheral
memories and loopback capability on peripheral I/Os.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
https://www.ti.com/lit/pdf/spnu575
https://www.ti.com/ww/en/functional_safety/safeti/index.html
https://www.ti.com/ww/en/functional_safety/safeti/index.html
https://www.ti.com/tool/SAFETI_DIAG_LIB
https://www.ti.com/tool/SafeTI-Hercules-Diag-Lib-CSP
https://www.ti.com/tool/safeti-halcogen-csp
https://www.ti.com/tool/safeti_cqkit
https://www.ti.com/ww/en/functional_safety/safeti/index.html

System Description www.ti.com

4 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

The N2HET is an advanced programmable timer. With the N2HET timer, the application can perform
sophisticated timing functions with minimal CPU interaction or loading. Each N2HET on the device
includes its own specialized processing unit, program/data memory, and a dedicated IO port that allows
one timer to control up to 32 IO pins. The N2HET instruction set includes instructions for basic timing
operations (counters, capture registers, compare registers) as well as arithmetic, logical, shift, and branch
capabilities. Sophisticated timing functions, such as the HSC and PTO applications of this design, can be
created from these instruction primitives. At the same time, these functions operate largely autonomously
which provides two major benefits to the application developer when compared against a solution
consisting of a CPU and a fixed function timer. First, the CPU loading for timing functions as a percent of
the available CPU bandwidth is reduced, as fewer interactions are required. Second, there is often the
possibility to relax the interrupt latency requirement that the timing function places on the CPU because
the N2HET can execute a series of simple steps autonomously.

The N2HET also includes a transfer unit (the HTU) that allows it to initiate DMA operations to/from the
main memory on the device. With the HTU, the N2HET can execute entire lists of commands from main
memory or store a large number of samples to memory without any CPU interaction.

The high level of diagnostic coverage and error correction available on the RM57L843 device make the
microcontroller suitable for high performance real-time control applications with functional safety and/or
high availability requirements.

Figure 2. RM57L843 Block Diagram

2.2 LAUNCHXL2-RM57L: RM57L843ZWTT LaunchPad™
The Hercules RM57Lx LaunchPad Development Kit is based on the highest performance Hercules MCU
RM57L843 – lockstep cached 330MHz ARM Cortex-R5F based RM series MCU.

The LaunchPad features connectivity options such as IEEE 1588 precision time Ethernet PHY DP83630
and has the capability in addition to the standard BoosterPack headers, for further expansion to an FPGA
or an external SRAM using high density connectors for MCU’s parallel interfaces - EMIF, RTP and DMM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com System Description

5TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

The RM57Lx MCUs include many diagnostic features such as ECC protection for CPU caches & other
memories and a rich set of peripherals such as two 12-bit ADCs, programmable High-End timers, motor
control peripherals (eQEP, eCAP, ePWM), Ethernet, MibSPI, EMIF and many serial communication
interfaces.

Figure 3. LAUNCHXL2-RM57L LaunchPad Featuring the RM57L843

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Block Diagram www.ti.com

6 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

(2) An exception to this rule is the specification for hardware debounce, which is based on the VCLK frequency not the N2HET HR clock
frequency.

3 Block Diagram
This section explains the block diagrams of the N2HET based HSC and PTO functions of this design.

3.1 N2HET Based High Speed Counter
Figure 4 contains a block diagram of the HSC function. It consists of four major sub-blocks:

• Counter Block
• Auxiliary Input Block
• Output Compare Block
• Input Capture Block

While this example maps the HSC function to N2HET1 on the RM57L843, the same function could also be
mapped to N2HET2 or to both N2HET1 and N2HET2 if two HSC instances are required. The HSC timing
specifications provided in Table 1 are based on the 110MHz maximum N2HET clock frequency available
on the RM57L843; for other devices in the Hercules family the timing specifications can be scaled to
match the N2HET frequency of a particular device. The N2HET memory and cycle requirements for each
HSC instance are also listed in Table 1; so that it is possible to evaluate the number of HSC instances
that can be implemented on a single N2HET. The HSC implementation does require more than 100 of the
maximum 128 execution cycles available during each loop resolution period when the N2HET HR
prescale is set to divide by 1 for maximum resolution. On the RM57L843 there is sufficient program
memory on each N2HET to implement two instances of HSC on each N2HET, but the HR prescale must
be increased to divide by 2 to allow for up to 256 execution cycles per loop resolution period. If this is
done, then most (2) of the timing performance specifications of the HSC as described in Table 1 will be
reduced by a factor of two.

Figure 4. HSC Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Block Diagram

7TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

3.1.1 HSC Counter Block
The counter block processes the two primary HSC inputs, INA and INB, and outputs a 32-bit count value
that tracks the activity on the primary inputs. The counter block also takes auxiliary inputs from the
auxiliary input block that control whether the counter is enabled, and whether or not it should be reset or
loaded with a sync (homing) value.

The counter range may be programmed through two registers, MIN and MAX. The behavior of the counter
when it reaches these limits is programmable. The counter may either saturate or rollover.

When the counter is programmed to rollover, an increment command from MAX results in a value of MIN.
Likewise a decrement from MIN results in MAX.

When programmed to saturate, an increment from MAX results in the counter saturating at MAX. Likewise
a decrement from MIN results in the counter saturating at MIN. When the counter saturates it also sets its
internal valid state to indicate that the count is invalid.

When the counter is invalid, the output compare block actions are skipped. The counter may be returned
to valid either by a synchronization event (homing) or through software running on the host CPU.

The primary counter inputs INA and INB use the N2HET hardware input filtering to debounce these pins.
The debounced signal is decoded based on the counting mode. Three major counting modes are
supported, where the major mode is determined by the counting waveform encoding. Each major mode
supports two or three minor modes, which determine which edges of the waveform are counted:
• Count/Dir Major Mode (See Figure 5). x2 and x1 Minor Modes Are Supported.
• Clockwise/Counter Clockwise Major Mode (See Figure 6) x2 and x1 Minor Modes Are Supported.
• Quadrature Major Mode (See Figure 7) x4, x2 and x1 Minor Modes Are Supported.

Figure 5. Counting in Count/Dir Mode Major Mode -x2, x1 Minor Modes

Figure 6. Counting in Clockwise / Counter-Clockwise Major Mode - x2, x1 Minor Modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Block Diagram www.ti.com

8 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 7. Counting in Quadrature Major Mode - x4, x2, x1 Minor Modes

After filtering and decoding the INA, INB primary inputs, the count up/down signal from the decoder is
passed through a hysteresis block before the final increment or decrement command is issued to the
counter. Hysteresis allows the counter to correct automatically for errors due to torsion or backlash in the
mechanical driveline whenever the direction of motion is changed. The number of counts to filter on a
direction change is programmable and can be different for each direction of change. Figure 8 shows an
example where 3 counts of hysteresis is applied upon a direction change from incrementing to
decrementing in quadrature x4 counting mode.

Figure 8. Example of Hysteresis on Direction Reversal

3.1.2 HSC Auxiliary Input Block
The auxiliary input block processes four auxiliary inputs (INW, INX, INY, and INZ) and performs the
following functions:
• Samples each auxiliary input at the rate of the N2HET loop resolution (1.16 µs for this design).
• Filters each pin with a programmable filter delay.
• Delays the HSC startup until each auxiliary input is debounced at least once.
• Detects the following conditions for each pin: Rising Edge, Falling Edge, High Level, Low Level.
• Outputs pin action signals to the Counter, Output Compare, and Input Capture Blocks.
• Accepts software triggers for the pin action signals.

The signals provided to the Counter block are:
• Counter Enable - Must be active for the counter to count.
• Counter Reset - Causes the counter to reset to a predefined value (normally zero).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Block Diagram

9TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

• Counter Sync - Causes the counter to preset to a predefined value.

The signals provided to the Capture block are:
• Trigger Capture A to Capture Counter Value
• Trigger Capture B to Capture Counter Value

The signals provided to the Output Compare block are:
• Force OUTA to a predefined state (High or Low).
• Force OUTB to a predefined state (High or Low).

Each of these signals is formed by a logical combination of the INW, INX, INY, and INZ pin conditions
(after any filtering has been performed). Additionally there are software triggered conditions for the counter
enable, reset, sync, input captures, and output force functions. The software counter enable and output
force bits are persistent - they remain in effect until cleared by software. The software reset, sync, and
capture conditions are one-shot, they are set by software and automatically cleared after being processed.

The Auxiliary input block combines the pin conditions and software conditions with a bitwise OR-AND
structure. First, two sets of OR conditions across all pin and software conditions are processed to produce
two pattern matches. The logical AND of each pattern match then produces the final trigger event out of
the Auxiliary input block. Figure 9 illustrates the OR-AND structure that can be configured for each of
outputs of this block.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Block Diagram www.ti.com

10 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 9. Trigger Options based on Auxiliary Inputs and Software Events

3.1.3 HSC Output Compare Block
The HSC Output compare block implements two output compare registers for each HSC output pin. The
comparisons performed by this block are listed in Table 3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Block Diagram

11TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

For pin OUTA, the compare registers CMPA1 and CMPA2 define three different intervals. The value
driven onto the OUTA pin can be specified by the host driver for each of the three intervals. For pin
OUTB, the compare registers CMPB1 and CMPB2 perform a similar function.

In addition to the interval comparisons, exact match comparisons between the counter and each of the
four compare registers is performed. While not implemented in this design, the HSC N2HET program is
constructed with interrupt capable instructions for each comparison listed in Table 3 so that adding
interrupts to the program is simply a matter of setting the interrupt request bit of the desired N2HET
compare instruction.

Table 3. HSC Output Compare Block Comparisons and Actions

Comparison Action on Pins Interrupt Host CPU
Counter ≤ CMPA1 Drive Pin OUTA to Interval 1 Output Value optional

CMPA1 ≤ Counter < CMPA2 Drive Pin OUTA to Interval 2 Output Value optional
CMPA2 ≤ Counter Drive Pin OUTA to Interval 3 Output Value optional

CMPA1 == Counter none optional
CMPA2 == Counter none optional
Counter ≤ CMPB1 Drive Pin OUTB to Interval 1 Output Value optional

CMPB1 ≤ Counter < CMPB2 Drive Pin OUTB to Interval 2 Output Value optional
CMPB2 ≤ Counter Drive Pin OUTB to Interval 3 Output Value optional

CMPB1 == Counter none optional
CMPB2 == Counter none optional

While currently not implemented in the examples accompanying this design, any of five tests listed above
can be configured to interrupt the host processor when true.

The state of each output pin can also be overridden (forced) by a signal from the Auxiliary input block. For
each pin there is a force signal, and the pin state while the force is applied can be programmed to be
either high or low.

The output compare function is bypassed whenever the counter state becomes invalid (saturated). In this
case, unless a force signal from the auxiliary input block is applied, the output pins retain their last valid
state.

3.1.4 HSC Input Capture Block
The input capture block is perhaps the simplest. Upon receiving a trigger from the Auxiliary input block,
each capture register simply copies the counter value and holds it until the next trigger. The host side
driver can read the capture register to determine the position at which the trigger event occurred. The
capture is evaluated each loop before the counter is incremented or decremented.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Block Diagram www.ti.com

12 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

3.2 N2HET Based Pulse Train Output
Figure 10 is a block diagram of the PTO function. The PTO function consists of three main functional
blocks:
• Command Buffer
• Command Processor
• Step Execution

Figure 10. PTO Block Diagram

3.2.1 PTO Command Buffer Block
The PTO Command buffer consists of two 32-bit locations in the N2HET RAM where the application code
submits a new command to the PTO.

Each command is made up of two 32-bit words as illustrated in Figure 10. The first 32-bit word simply
contains the initial step width - measured in N2HET HR resolution clock periods (9.09ns for this example).
The second 32-bit word contains fields for the number of steps to execute, the acceleration type
(acceleration, deceleration, or constant speed), the direction (forward, reverse, or pure time delay with no
movement in either direction), and an "N" field that indicates that the command is new and not yet
processed by the N2HET. When N field is set, the host CPU should not submit another command to the
PTO as this will overwrite and may corrupt the previous command that was submitted. Once the N bit is
cleared, this means the N2HET has extracted the information needed from the command buffer and the
CPU is free to write a new command to the command buffer.

3.2.2 PTO Command Processor Block
The PTO command processor block is responsible for keeping track of the PTO state, decoding incoming
commands, and computing the width of each step in the series described by the command.

The PTO state can be either:
1. Reset - This is the initial state of the PTO. In this state the PTO drives its outputs to a predefined state

(Low,Low) and ignores any commands submitted to the command buffer.
2. Idle - The prior command completed and the command buffer was empty. In this state the PTO

maintains the last state on the OUTA and OUTB pins and continually checks the submission of a new
command to the command buffer. When a new command is detected the PTO state transitions from
Idle back to Active.

3. Active - Currently Executing a Prior Command. A new command may be submitted to the command
buffer and will begin execution as soon as the current command completes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Block Diagram

13TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

These three states as illustrated by Figure 11.

Figure 11. State Transitions of the PTO Command Processor Block

3.2.3 PTO Step Execution Block
The PTO Step execution block simply consists a 32-bit free running counter and of a pair of output
compare registers for each output pin. With two output compares per pin, each pin can be toggled up to
twice during a given step period. For example in the Count/Dir mode, CMPA1 and CMPA2 are used to
first drive the 'Count' signal high, then drive it low to create a pulse.

Figure 12 illustrates how the PTO command processor block configures the four output compare registers
to create a simple Count/Dir Output waveform. The first compare point CMPB1 is used to set OUTB
(direction) to indicate the current direction. A fixed delay after this compare point, a rising edge on OUTA
is created by CMPA1. The delay provides setup time for the direction signal before the rising edge of the
count signal. Approximately one half of the pulse width later, CMPA2 is configured to drive OUTA low
again to complete the generation of the COUNT pulse high period. Finally the CMPB2 pin is used to time
the end of the current step and to begin processing of any subsequent steps.

Figure 12. Illustration of how the two output compares of the step execution block are used to create a
Count/Dir Waveform

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

System Design Theory www.ti.com

14 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

4 System Design Theory
This section describes the design of the HET code for the HSC and PTO functions.

4.1 HSC Design
This section describes the design and implementation of the HSC N2HET program and host-side driver
functions. The specific example of the HSC quadrature mode is used but the same theory applies to the
other HSC modes.

4.1.1 HSC Counter Block Implementation
The HW filtering step of the HSC counter block uses the N2HET hardware suppression filtering feature.
The HW suppression filter allows the application to set a minimum pulse duration which will be allowed to
pass through the filter for processing by the N2HET. Filtering is controlled by registers HETSFPRLD and
HETSFENA. The hardware suppression filter feature is chosen for inputs INA, INB because these inputs
are expected to have a higher operating frequency than the auxiliary inputs and the filter allows the
minimum pulse width to be configured with resolution up to the N2HET bus clock frequency. The operation
of the filter HW suppression filter function is described in theRM57Lx Technical Reference Manual [8].

After filtering the inputs INA and INB, the signals need to be decoded to determine when to increment or
decrement the counter. The decoding portion of the N2HET HSC code is different for each of the three
counting modes. The code for Quadrature Mode is shown in Example 1. It simply tests for an active edge
first on INA,, then on INB. Once an active edge is detected, the code checks if the edge is rising or falling.
Once that is determined, the code checks the level of the other counter input pin to determine whether to
branch to H1_CNT_UP or H1_CNT_DN. If no edges are detected, then the code branches to
H1_CNT_END as the counter will not be updated during the current loop resolution period.

Example 1. HSC Counter Decoding - Quadrature Mode

;--
; H1 COUNTER DECODING
;
; Count Up if:
; (A Rise && B Low) || (A Fall && B High) || (B Rise && A High) || (B Fall && A Low)
;
; Count Down if:
; (A Rise && B High) || (A Fall && B Low) || (B Rise && A Low) || (B Fall && A High)
;
; For 2x Mode, change H1_CNTB1 to always branch to H1_CNT_END
; For 1x Mode, make the same change plus change H1_CNTA4 to always branch to H1_CNT_END
;--
H1_CNTA1 BR {event = BOTH, pin=PIN_H1_INA, cond_addr = H1_CNTA2, next=H1_CNTB1}
H1_CNTA2 BR {event = RISE, pin=PIN_H1_INA, cond_addr = H1_CNTA3, next=H1_CNTA4}
H1_CNTA3 BR {event = LOW, pin=PIN_H1_INB, cond_addr = H1_CNT_UP, next = H1_CNT_DN}
H1_CNTA4 BR {event = LOW, pin=PIN_H1_INB, cond_addr = H1_CNT_DN, next = H1_CNT_UP}

H1_CNTB1 BR {event = BOTH, pin=PIN_H1_INB, cond_addr = H1_CNTB2, next=H1_CNT_END}
H1_CNTB2 BR {event = RISE, pin=PIN_H1_INB, cond_addr = H1_CNTB3, next=H1_CNTB4}
H1_CNTB3 BR {event = LOW, pin=PIN_H1_INA, cond_addr = H1_CNT_DN, next = H1_CNT_UP}
H1_CNTB4 BR {event = LOW, pin=PIN_H1_INA, cond_addr = H1_CNT_UP, next = H1_CNT_DN}

When the initial decoding produces a count up or a count down signal, the next step is to apply Hysteresis
in case of a direction change. The code to implement Hysteresis is shown in Example 2. This code simply
resets the hysteresis count of the opposite counting direction, then decrements the hysteresis counter for
the current counting direction skipping the counter code when the hysteresis count is nonzero.

Example 2. HSC Counter Hysteresis

;--
; H1 COUNTER HYSTERESIS - DOWN DIRECTION
;--

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
https://www.ti.com/lit/pdf/spnu562

www.ti.com System Design Theory

15TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Example 2. HSC Counter Hysteresis (continued)
H1_CNT_DN MOV32 {type=IMTOREG&REM, reg=NONE, remote=H1_HYS_UP, data = H1_CNT_HYSV_LR }
H1_HYS_DN DJZ {next=H1_CNT_END, cond_addr = H1_CNT_DEC, reg=NONE, data=H1_CNT_HYSV_LR }

;--
; H1 COUNTER HYSTERESIS - UP DIRECTION
;--
H1_CNT_UP MOV32 {type=IMTOREG&REM, reg=NONE, remote=H1_HYS_DN, data = H1_CNT_HYSV_LR }
H1_HYS_UP DJZ {next=H1_CNT_END, cond_addr = H1_CNT_INC, reg=NONE, data=H1_CNT_HYSV_LR }

After applying Hysteresis, if the counter needs to be incremented or decremented then this action is
performed. The code that performs these functions is shown in Example 3

First a simple +1 or -1 operation is performed on the current count (stored in register T). Then the updated
count value is checked to see if it crosses the counter minimum or maximum limit. If so then either the
rollover or saturation operation is applied. The default code loaded into the N2HET implements rollover,
but by changing the next address field of the H1_CNT_RST the operation can be changed to saturation.

After these checks have been applied, if the counter value changes it is written to H1_CNT_VALUE so
that the count value can be fetched by other functional blocks.

Example 3. HSC Counter Saturation or Rollover and Count Value / Valid Bit

;--
; H1 COUNT WITH SATURATION/ROLLOVER - DOWN
;--
H1_CNT_DEC SUB {src1=T, src2=IMM, dest=S, data=0, hr_data=1}
H1_CNT_NRS_REG ADD {src1=IMM, src2=ZERO, dest=R,

data=H1_CNT_DRSV_LR, hr_data=H1_CNT_DRSV_HR}
H1_CNT_MIN_REG SUB {src1=T, src2=IMM, dest=NONE,

data=H1_CNT_MINV_LR, hr_data=H1_CNT_MINV_HR, next=H1_CNT_RS1}
;--
; H1 COUNT WITH SATURATION/ROLLOVER - UP
;--
H1_CNT_INC ADD {src1=T, src2=IMM, dest=S, data=0, hr_data=1}
H1_CNT_PRS_REG ADD {src1=IMM, src2=ZERO, dest=R,

data=H1_CNT_URSV_LR, hr_data=H1_CNT_URSV_HR}
H1_CNT_MAX_REG SUB {src1=T, src2=IMM, dest=NONE,

data=H1_CNT_MAXV_LR, hr_data=H1_CNT_MAXV_HR, next=H1_CNT_RS1}
;--
; H1 COUNT WITH SATURATION/ROLLOVER COMMON
; Driver software must change next address of H1_CNT_RS2 to:
; - H1_CNT_END for rollover mode
; - H1_CNT_VALID for saturation mode
;--
H1_CNT_RS1 BR {event=NZ, cond_addr=H1_CNT_VALUE}
H1_CNT_RS2 ADD {src1=R, src2=ZERO, dest=NONE, rdest=REM, remote=H1_CNT_VALUE,

data=0, hr_data=0, next=H1_CNT_END}
;--
; H1 COUNTER VALUE
;--
H1_CNT_VALUE ADD {src1=S, src2=ZERO, dest=IMM, data=0, hr_data=0, next=H1_CNT_END}

;--
; H1 COUNTER VALID
;--
H1_CNT_VALID ADD {src1=ZERO, src2=ZERO, dest=IMM, data=0, hr_data=0, next=H1_CNT_END}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

System Design Theory www.ti.com

16 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

The counter enable, sync, and reset functions are implemented prior to processing of INA, INB. The code
for these functions is found in Example 4. Each function is gated by an OR-AND combination of the
debounced auxiliary inputs and software triggers based on an event vector held within register B. The
event detection is described in greater detail in Section 4.1.2. The logical 'OR' of the event inputs is
implemented with the AND (bitwise-AND) instruction followed by a BR (branch) on non-zero result. For
example, for the counter reset function the AND operation at H1_RES_Q1T followed by the BR operation
at H1_RES_Q1B will continue on to test the second 'OR' condition (H1_RES_Q2T, H1_RES_Q2B) if any
one OR more of the edge detection bits in the register B match a corresponding bit that is set in the
qualifier bit mask held in the data field of H1_RES_Q1T.

Note that because at least one of the four conditions for each pin (Rising Edge, High, Falling Edge, Low)
must be true, a qualifier mask that contains all four bits set will match unconditionally. This feature is used
when only a single 'OR' condition is desired or when continuous triggering is needed.

For the counter reset and sync functions, when the qualifier tests pass, the counter is simply loaded with a
preset value. For the reset function this is performed by the H1_RES_REG. For sync this is performed by
H1_SYN_REG. In addition, the sync operation also sets the counter valid state to valid by H1_SYN_VAL.

The same OR-AND event qualifier is used to decode the count enable, but the result is simply to either
skip the remainder of the counting block or to execute it.

Example 4. HSC Counter Enable, Sync and Reset Functions

;--
; H1 COUNTER RESET
;--
H1_RES_Q1T AND {src1=IMM, src2=B, dest=NONE, data=H1_RES_Q1V, hr_data=0}
H1_RES_Q1B BR {event=NZ, cond_addr=H1_RES_Q2T, next=H1_RES_END}
H1_RES_Q2T AND {src1=IMM, src2=B, dest=NONE, data=H1_RES_Q2V, hr_data=0}
H1_RES_Q2B BR {event=NZ, cond_addr=H1_RES_REG, next=H1_RES_END}
H1_RES_REG ADD {src1=IMM, src2=ZERO, dest=NONE, rdest=REM, remote=H1_CNT_VALUE,

data=H1_CNT_RESV_LR, hr_data=H1_CNT_RESV_HR}
H1_RES_END
;--
; H1 COUNTER SYNC
;--
H1_SYN_Q1T AND {src1=IMM, src2=B, dest=NONE, data=H1_SYN_Q1V, hr_data=0}
H1_SYN_Q1B BR {event=NZ, cond_addr=H1_SYN_Q2T, next=H1_SYN_END}
H1_SYN_Q2T AND {src1=IMM, src2=B, dest=NONE, data=H1_SYN_Q2V, hr_data=0}
H1_SYN_Q2B BR {event=NZ, cond_addr=H1_SYN_REG, next=H1_SYN_END}
H1_SYN_REG ADD {src1=IMM, src2=ZERO, dest=NONE, rdest=REM, remote=H1_CNT_VALUE,

data=H1_CNT_SYNV_LR, hr_data=H1_CNT_SYNV_HR}
H1_SYN_VAL ADD {src1=IMM, src2=ZERO, dest=NONE, rdest=REM, remote=H1_CNT_VALID,

data=1, hr_data=0}
H1_SYN_END
;--
; H1 COUNTER ENABLE
;--
H1_ENA_Q1T AND {src1=IMM, src2=B, dest=NONE, data=H1_ENA_Q1V, hr_data=0}
H1_ENA_Q1B BR {event=NZ, cond_addr=H1_ENA_Q2T, next=H1_OUTPUTS}
H1_ENA_Q2T AND {src1=IMM, src2=B, dest=NONE, data=H1_ENA_Q2V, hr_data=0}
H1_ENA_Q2B BR {event=NZ, cond_addr=H1_ENA_CNTR, next=H1_OUTPUTS}
H1_ENA_CNTR

4.1.2 HSC Auxiliary Input Block Implementation
The auxiliary input block is responsible for the debounce and edge/level detection on the slow auxiliary
inputs INW, INX, INY, INZ.

The debounce algorithm is the same algorithm that is implemented by the N2HET hardware suppression
filter logic, except that the auxiliary inputs are sampled once per loop resolution period (1.16 µs for this
design) and they are debounced in software. An example of the debounce of pin INW is shown in
Example 5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com System Design Theory

17TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Example 5. HSC Debounce Code for Auxiliary Input A

;--
; H1 DEBOUNCE PIN_H1_INW
; Steps:
; 1. Reset debounce count when any edge is detected on PIN_H1_INW
; 1a. Detect any edge (rise or fall) on PIN_H1_INW
; 1b. Reset debounce count to max value if edge is detected
; 2. Skip to end (H1_INW_DEBE) and decrement debounce count - if pin is not yet debounced
; 3. If pin is debounced (counter reached 0 before entering into step 2)
; 3a. Set a bit mask in Reg A indicating a valid sample on pin during this loop.
; 3b. Set bit in register B if pin is high
; NB: for PIN_H1_INW, bit position in register R,S is determined by H1_INW_MSK
;--
H1_INW_DEB1 BR {event=BOTH, pin=PIN_H1_INW, cond_addr=H1_INW_DEB2, next=H1_INW_DEB3}
H1_INW_DEB2 MOV32{type=IMTOREG&REM, reg=NONE, remote=H1_INW_DEB3, data=H1_INW_DEBV,hr_data=0}
H1_INW_DEB3 DJZ {cond_addr=H1_INW_DEB4, next=H1_INW_DEBE, data=H1_INW_DEBV}
H1_INW_DEB4 AND {src1=A, src2=IMM, dest=A, data=H1_INW_NMSK, hr_data=0}
H1_INW_DEB5 BR {event=HIGH, pin=PIN_H1_INW, cond_addr=H1_INW_DEB6, next=H1_INW_DEBE}
H1_INW_DEB6 OR {src1=B, src2=IMM, dest=B, data=H1_INW_MSK, hr_data=0, next=H1_INW_DEBE}
H1_INW_DEBE

After each of the four pins is debounced, the results are accumulated. Two results are computed. First, the
cumulative debounce status of each of the auxiliary inputs is tracked. The HSC is programmed to wait
until all of the auxiliary inputs have been debounced at least one time and therefore have a valid initial
state before any processing is performed.

Second a vector that contains bit fields representing the detection of a Rising Edge, Falling Edge, High
Level (excluding rising edge), and Low Level (excluding falling edge) is detected during the current loop
resolution period. This vector is used by the other functional blocks to trigger operations like the count
enable and reset. The code that implements the debounce accumulate function and produces the event
vector is shown and explained in Example 6

Example 6. HSC Debounce Accumulate Code

;--
; H1 DEBOUNCE ACCUMULATE
;--
; Accumulate Debounced Pin Status of HSC H1 Auxiliary Inputs for use by Input Actions
; Upon Entry
; Register A - the negative bit mask for pins that have debounced values in the current loop.
; Register B - values of pins that are debounced, 0 for pins not debounced in current loop.
; The bit masks are of the form [P P P P] where P = [W X Y Z]. (Repeated 4 times)
; The repetition facilitates the calculation of edge/level detection.
; The Data field of H1_CUM_DEB1 is initially [Fh Fh Fh Fh]
;
; Steps:
; 1. AND (to clear bits) H1_CUM_DEB1 with Register A.
; When H1_CUM_DEB1 == 0 all pins have been debounced at least once.
; 2. Skip to the end of H1 until all inputs are debounced.
; 3. Fetch previous debounced pin state to Register R
; 4. Extract the unchanged pin values from Register R into Register S
; 5. Combine newly debounced pin states with previous pin states to compute the
; current debounced pin state into register B
; 6. Load the previous debounced pin state from H1_DEB_RSLT into register A
; 7. Store the current debounced pin state from register B into H1_DEB_RSLT for next loop
; 8. Register A format: [P0 P0 P0 P0] where P0 = [W0 X0 Y0 Z0] - the previous debounced
; pin state. XOR A with a bit mask to transform its contents to [P0 !P0 P0 !P0]
; 9. Register B format: [P1 P1 P1 P1] where P1 = [W1 X1 Y1 Z1] - the current debounced
; pin state. XOR B with a bit mask to transform its contents to [!P1 !P1 P1 P1]
; 10. Logically AND B and A and store the result into B and also H1_PIN_EVTS
; The result is:
; [P0 !P0 P0 !P0] * [!P1 !P1 P1 P1] = [P0*!P1 !P0*!P1 P0*P1 !P0*P1]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

System Design Theory www.ti.com

18 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Example 6. HSC Debounce Accumulate Code (continued)
; which provides the following information about the debounced pin states:
; P0*!P1 indicates falling edges on pins W X Y Z
; !P0*!P1 indicates pins W X Y Z low but not falling
; P0* P1 indicates W X Y Z high but not rising
; !P0* P1 indicates rising edges on pins W X Y Z
;
; 11. The above steps 3-11 must run twice before the result is valid.
; Skip to the end of H1 after only the initial run.
;
;--
H1_CUM_DEB1 AND {src1=IMM, src2=A, dest=IMM, data=H1_ALL_MSK, hr_data=0}
H1_CUM_DEB2 BR {next=H1_END, event=Z, cond_addr=H1_CUM_DEB3}
H1_CUM_DEB3 AND {src1=REM, src2=A, dest=A, data=0, hr_data=0, remote=H1_DEB_RSLT}
H1_CUM_DEB4 XOR {src1=REM, src2=IMM, dest=R, data=H1_PRV_MSK, hr_data=0, remote=H1_DEB_RSLT}
H1_DEB_RSLT OR {src1=A, src2=B, dest=B, data=0, hr_data=0, remote=H1_DEB_RSLT, rdest=REM}
H1_CUM_DEB5 XOR {src1=IMM, src2=B, dest=B, data=H1_CUR_MSK, hr_data=0}
H1_PIN_EVTS AND {src1=R, src2=B, dest=B, data=0, hr_data=0, remote=H1_PIN_EVTS, rdest=REM}
H1_CUM_DEB6 DJZ {next=H1_END, data=1, cond_addr=H1_SW_TRIG}
;--
; Software Triggers Both Pulse & Persistent
;--
H1_SW_TRIG OR {src1=B, src2=IMM, dest=B, data=0, hr_data=0}
H1_SW_TRIG_SAV1 AND {src1=B, src2=IMM, dest=A, data=H1_SWCLR_CLR, hr_data=0}
H1_SW_TRIG_SAV2 XOR {src1=A, src2=ONES, dest=NONE, rdest=REM,

remote=H1_END, data=0, hr_data=0}

4.1.3 HSC Output Compare Block Implementation
The output compare block first checks the counter valid state to determine if the compare operations
should be skipped. Assuming the counter is valid, the next step is to check the current count value against
the two compare registers for each output pin.

The code for pin OUTA is shown in Example 7. Note that two tests are performed on each compare value.
First an exact match to the compare register is tested, (ex H1_CMPA_INT1). Then a test for less than or
equal to is performed (H1_CMPA_TST1).

Either of these two tests could be programmed to generate a compare match interrupt, simply by turning
on the interrupt enable field of the BR instruction. This design does not make use of that capability but it is
assumed that it will be required and therefore the code makes the provision for the exact match interrupt
even if it is not needed to determine the output pin state.

After the counter is tested against both compare registers, the range is known and the appropriate output
value for that range is stored in register R (for OUTA).

Example 7. HSC Output Compare Code Example for OUTA

;--
; H1 OUTPUT COMPARE - OA
;--
H1_CMPA_CMP1 SUB {src1=IMM, src2=T, dest=NONE, data=H1_CMPA_THR1, hr_data=0}
H1_CMPA_INT1 BR {event=Z, cond_addr=H1_CMPA_TST1, next=H1_CMPA_TST1}
H1_CMPA_TST1 BR {event=LO, cond_addr=H1_CMPA_CAC1, next=H1_CMPA_CMP2}
H1_CMPA_CAC1 MOV32 {type=IMTOREG, reg=R, data=H1_CMPA_ACT1_LR, hr_data=H1_CMPA_ACT1_HR,

next=H1_CMPB_CMP1}
H1_CMPA_CMP2 SUB {src1=IMM, src2=T, dest=NONE, data=H1_CMPA_THR2, hr_data=0}
H1_CMPA_INT2 BR {event=Z, cond_addr=H1_CMPA_TST2, next=H1_CMPA_TST2}
H1_CMPA_TST2 BR {event=LO, cond_addr=H1_CMPA_CAC2, next=H1_CMPA_CAC3}
H1_CMPA_CAC2 MOV32 {type=IMTOREG, reg=R, data=H1_CMPA_ACT2_LR, hr_data=H1_CMPA_ACT2_HR,

next=H1_CMPB_CMP1}
H1_CMPA_CAC3 MOV32 {type=IMTOREG, reg=R, data=H1_CMPA_ACT3_LR, hr_data=H1_CMPA_ACT3_HR,

next=H1_CMPB_CMP1}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com System Design Theory

19TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

After the compare operation, the force output action is checked. If the force output condition is triggered,
then the force output value is shifted out onto the pin. If not, then the output from the compare register is
pushed onto the pin if the compare was tested. If the compare was skipped, then the pin is left
unchanged.

The code that implements this function for pin OUTA is shown in Example 8. Note that the compare
values for drive high and drive low are both non-zero, so a zero condition at H1_OUTA_T2 indicates that
the compare was skipped as the compare block always initializes register R to zero prior to testing the
counter valid bit.

Example 8. HSC OUTA code prioritizing force over compare functions

;--
; H1 OUTPUT A
; Force Conditions Prioritized over Compare Match
;--
H1_FRCA_Q1T AND {src1=IMM, src2=B, dest=NONE, data=H1_FRCA_Q1V, hr_data=0}
H1_FRCA_Q1B BR {event=Z, cond_addr=H1_OUTA_T1}
H1_FRCA_Q2T AND {src1=IMM, src2=B, dest=NONE, data=H1_FRCA_Q2V, hr_data=0}
H1_FRCA_Q2B BR {event=Z, cond_addr=H1_OUTA_T1}
H1_FRCA_CAC MOV32 {type=IMTOREG, reg=R, data=H1_FRCA_ACT_LR, hr_data=H1_FRCA_ACT_HR}
H1_OUTA_T1 ADD {src1=R, src2=ZERO, dest=NONE, data=0, hr_data=0, rdest=REM,

remote=H1_OUTA_ACT}
H1_OUTA_T2 BR {event=Z, cond_addr=H1_OUTA_END, next=H1_OUTA_ACT}
H1_OUTA_ACT SHFT {smode=OR1, cond=UNC, pin=PIN_H1_OA, data=0, cond_addr=H1_OUTA_END}
H1_OUTA_END

4.1.4 HSC Input Capture Block Implementation
The input capture block is very simple, it consists of a qualifier sequence plus a copy of the counter value
into the capture register if both qualification conditions pass. The code that implements Input Capture A is
shown in Example 8. The capture code executes in each loop prior to processing the counter so that the
capture is performed on the count value that was present when the edge was asserted.

Example 9. HSC Input Capture A Code Example

;--
; H1 CAPTURE A OPERATION
;--
H1_CAPA_Q1T AND {src1=IMM, src2=B, dest=NONE, data=H1_CAPA_Q1V, hr_data=0}
H1_CAPA_Q1B BR {event=NZ, cond_addr=H1_CAPA_Q2T, next = H1_CAPA_END}
H1_CAPA_Q2T AND {src1=IMM, src2=B, dest=NONE, data=H1_CAPA_Q2V, hr_data=0}
H1_CAPA_Q2B BR {event=NZ, cond_addr=H1_CAPA_REG, next = H1_CAPA_END}
H1_CAPA_REG ADD {src1=REM, src2=ZERO, dest=IMM, remote=H1_CNT_VALUE, data=0, hr_data=0}
H1_CAPA_END

4.1.5 HSC Host Side Driver Implementation
The HSC Host Side driver is packaged as a library project. This project is located in <install
dir>\ccs_proj\hsc_common (See Section 6 for an explanation of the firmware installation process and
directory structure).

When including the HSC function in your application you may include the compiled library hsc.lib at link
time and include the header file hsc.h in your application code. The library includes four different N2HET
programs (one for each HSC mode plus a 'null' program to put the N2HET into an idle state until the HSC
function is initialized).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

i
i 1

4m 5 i 1
D

D 4 i 2, 3, . . .-

- =ìï
= í - =ïî

i
i 1

5 i 1
D

D 4 i 2, 3, . . .-

=ìï
= í + =ïî

i i 1N 4C
-

=

()
i 1

i i 1 i
i

2c
c c , n i , i 1 , 2 , . . .

4 m n 1

-
-= - = =

- +

i 1

i i 1 i
i

2c
c c , n i , i 1 , 2 , . . .

4n 1

-

-
= - = =

+

System Design Theory www.ti.com

20 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

4.2 PTO Design
This section describes the design and implementation of the PTO N2HET program and host-side driver
functions. The specific example of the PTO count/dir mode is used but the same theory applies to the
other PTO modes.

4.2.1 PTO Design Equations
The PTO function uses the equations described in Generate stepper-motor speed profiles in real time [1]
to compute linear acceleration and deceleration profiles efficiently using Taylor series approximations to
the ideal equations.

Equation 1 is the formula used to approximate the next pulse width in a series from the prior pulse width
during acceleration, and Equation 2 is the formula used during deceleration where m is the total number of
steps in the series.

(1)

(2)

For the N2HET implementation of the PTO, we have implemented a division function to compute the
difference between subsequent pulses. The numerator of the division operation is initialized to twice the
value shown in Equation 1 and Equation 2 because after the division is complete the result is rounded by
adding 1 and dividing by 2.

The formula for the division numerator is shown in Equation 3
(3)

The denominator is initialized to the value D1 according to Equation 4 if accelerating, or Equation 5 if
decelerating. Based on the initial denominator value, each subsequent denominator in the series can be
quickly calculated by either adding or subtracting 4 from the previous denominator.

(4)

(5)

4.2.2 PTO Command Buffer Block Implementation
The N2HET code for the PTO Command buffer block, as well as the step counter (part of the PTO
Command Processor) is shown in Example 10.

The host side driver should write each command to the data field of the instructions P1_BUF0 and
P1_BUF1, in that order, when it needs to issue a new command to the PTO function.

When the PTO command processor determines that all steps of the current command are complete
(based on the test performed by the instruction P1_CUR_STEP_COUNT), the command buffer is
evaluated again. After executing the instructions P1_BUF0 and P1_BUF1, the command buffer contents
are copied to the data field of the instruction P1_NEXT_PW_A and to the register S respectively.

If P1_CHKCMD_A determines that there is not a valid command in the command buffer, then control
moves to P1_IDL_C and the PTO function enters the idle state, because the previous command
completed and there is no new command to begin processing.

On the other hand, if P1_CHKCMD_A determines that a new command has been issued then P1_BUF1 is
cleared to signal to the host side driver that the buffer is empty and another command may be issued. The
new command will continue to be decoded from the copy of P1_BUF1 previously stored in register S.

Instructions P1_CHKCMD_B through P1_CHKCMD_E unpack the other fields of P1_BUF1 (from register
S) and move the relevant information to other points in the program where this information is required. For
example, P1_CHKCMD_C unpacks the step count field and copies it to P1_CUR_STEP_COUNT

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time

www.ti.com System Design Theory

21TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

The acceleration field is tested by P1_CHKCMD_F and P1_CHKCMD_G to determine whether an
acceleration, deceleration, or constant speed series was requested by the command. The calculations for
each of these three cases are different, and therefore execution either goes to P1_ACCCMD_A,
P1_DECCMD_A, or to P1_CSTCMD_C to seed the initial pulse width computation values to match the
type of acceleration requested.

After seeding the initial pulse width computation values, control is passed back to
P1_CUR_STEP_COUNT which should now contain a non-zero value. This will cause the actual execution
of the first step to begin with the branch to P1_NEXT_PW_A.

Example 10. PTO Command Buffer Code

; PTO is Active - Check for Command
P1_CUR_STEP_COUNT DJZ {cond_addr=P1_BUF0, next=P1_NEXT_PW_A, reg=A, data=0}

;---
; Command Buffer - written by CPU or DMA, 2 32-bit words:
;
;
; P1_BUF0 31 28 27 0
; Rsvd - 0s Initial Period
;
; P1_BUF1 31 28 27 24 23 22 21 20 19 0
; New Fwd / Rev/ Dly Dec/Acc/Const Resvd Pulse Count
; Cmd=xxx1 0001 1111 0000 11 10 00 00 1 to 1M
;
;---
P1_BUF0 ADD {src1=ZERO, src2=IMM, dest=NONE, data=0, hr_data=0,

rdest=REM, remote=P1_NEXT_PW_A}
P1_BUF1 ADD {src1=ZERO, src2=IMM, dest=S, data=0, hr_data=0, smode=csl, scount=4}

; Interrupt Generating Instruction for Next Command
P1_CHKCMD_A BR {event=C, cond_addr=P1_BUFCLR, next=P1_IDL_C}
P1_BUFCLR MOV32 {type=IMTOREG&REM, reg=NONE, remote=P1_BUF1, data=0, hr_data=0}
P1_CHKCMD_B AND {src1=IMM, src2=S, dest=NONE, data=P1_DIRMASK_LR, hr_data=P1_DIRMASK_HR,

smode=ASR, scount=28, rdest=REM, remote=P1_CUR_DIR}
P1_CHKCMD_C AND {src1=IMM, src2=S, dest=R, data=P1_CNTMASK_LR, hr_data=P1_CNTMASK_HR,

smode=LSL, scount=3, rdest=REM, remote=P1_CUR_STEP_COUNT}
P1_CHKCMD_E AND {src1=IMM, src2=S, dest=NONE, data=P1_ACCMASK_LR, hr_data=P1_ACCMASK_HR,

smode=CSL, scount=5}
P1_CHKCMD_F BR {event=C, cond_addr=P1_CHKCMD_G, next=P1_CSTCMD_C}
P1_CHKCMD_G BR {event=N, cond_addr=P1_DECCMD_A, next=P1_ACCCMD_A}

;Acceleration
P1_ACCCMD_A ADD {src1=ZERO, src2=IMM, dest=NONE, data=0, hr_data=1,

rdest=REM, remote=P1_NEXT_PW_K}
P1_ACCCMD_B ADD {src1=ZERO, src2=IMM, dest=NONE, data=0, hr_data=4,

rdest=REM, remote=P1_NEXT_PW_J}
P1_ACCCMD_C MOV64 {cntl_val=P1_CVAL_SUB_REM_R_R_REM, data=0, hr_data=0,

remote=P1_NEXT_PW_M, next=P1_CUR_STEP_COUNT}
;Deceleration
P1_DECCMD_A SUB {src1=R, src2=IMM, dest=NONE, data=0, hr_data=P1_ONE_FOURTH_HR,

rdest=REM, remote=P1_NEXT_PW_K, smode=ASR, scount=5}
P1_DECCMD_B SUB {src1=ZERO, src2=IMM, dest=NONE, data=0, hr_data=4, rdest=REM,

remote=P1_NEXT_PW_J}
P1_DECCMD_C MOV64 {cntl_val=P1_CVAL_ADD_REM_R_R_REM, data=0, hr_data=0,

remote=P1_NEXT_PW_M, next=P1_CUR_STEP_COUNT}
;Constant Speed
P1_CSTCMD_C MOV64 {cntl_val=P1_CVAL_NOP, data=0, hr_data=0,

remote=P1_NEXT_PW_M, next=P1_CUR_STEP_COUNT}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

System Design Theory www.ti.com

22 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

NOTE: While not implemented in this design, the choice of a 'BR' instruction for P1_CHKCMD_A
allows for either interrupt or DMA request generation, so that the PTO could easily execute a
table of commands stored in main memory and updated either in an ISR, or by the DMA or
HTU.

4.2.3 PTO Command Processor Implementation
The PTO Command processor includes code to keep track of the PTO state, the current step count, and
to generate both the pattern and timing for any steps that must be executed.

The current step count was described in Section 4.2.2 because it gates the execution of the command
buffer code.

The PTO state is tracked by the code shown in Example 11 which is executed after compare match of the
PTO Step Execution block:

Example 11. PTO Command Processor - PTO State Code

;---
; ECMP Should Match during this loop.
; Prepare the ECMP instructions before executing them.
; Different action depending on state: Stepping, Idle, Active
; State Encoding:
; Reset : P1_UPD_A = 0x0000000
; Idle : P1_UPD_A = 0x4000000
; Active : P1_UPD_A = 0x8000000
;---
P1_UPD_A ADD {src1=IMM, src2=ZERO, dest=NONE, data=0, hr_data=0, smode=csl, scount=1}

P1_UPD_B BR {event=C, cond_addr=P1_CUR_STEP_COUNT, next=P1_UPD_C}
P1_UPD_C BR {event=N, cond_addr=P1_IDL_A, next=P1_RST_A}

; Reset State - Set compare for next loop resolution period, and pin state for initial state
; (PIN_P1_OA=LOW,PIN_P1_OB=LOW by default)

P1_RST_A RADM64 {en_pin_action=ON,reg=T,pin=PIN_P1_OA,action=CLEAR,data=1,hr_data=0,
cond_addr=P1_ECMP2,remote=P1_ECMP1,comp_mode=ECMP};

P1_RST_B RADM64 {en_pin_action=ON,reg=T,pin=PIN_P1_OB,action=CLEAR,data=1,hr_data=0,
cond_addr=P1_UPD_A,remote=P1_ECMP2,comp_mode=ECMP,next=P1_END};

; Idle State-Set compare for current loop resolution period but do not change the pin state.
P1_IDL_A ADD {src1=T, src2=IMM, dest=NONE, data=1, hr_data=0, rdest=REM, remote=P1_ECMP1}
P1_IDL_B ADD {src1=T, src2=IMM, dest=NONE, data=1, hr_data=0, rdest=REM, remote=P1_ECMP2,

next=P1_CUR_STEP_COUNT}
P1_IDL_C ADD {src1=IMM, src2=ZERO, dest=NONE, data=P1_STATE_IDLE_LR,

hr_data=P1_STATE_IDLE_HR, rdest=REM, remote=P1_UPD_A}
P1_IDL_D ADD {src1=T, src2=IMM, dest=NONE, data=1, hr_data=0, rdest=REM, remote=P1_ECMP1}
P1_IDL_E ADD {src1=T, src2=IMM, dest=NONE, data=1, hr_data=0, rdest=REM, remote=P1_ECMP2,

next=P1_END}

This code executes during every loop resolution period when the PTO state is idle or in reset, because
both the RADM64 instructions at P1_RST_A and P1_RST_B (reset state) and P1_IDL_A and P1_IDL_B
(idle state) always set the compare instructions of the PTO Step Execution block to match the current
count plus one loop resolution period (data=1 field as part of the addition).

The default state after loading the PTO code into the N2HET is reset, and in this state the PTO outputs
are forced low (action=CLEAR in P1_RST_A, P1_RST_B). The host side driver needs to bring the PTO
out of the reset state and into the idle state by writing a value of 0x40000000 to the data field of instruction
P1_UPD_A.

In the Idle state, the PTO maintains the outputs OUTA and OUTB at their last state (high or low) by not
changing the 'action' field of the ECMP instructions that are part of the step execution block. This prevents
any unwanted steps from appearing on the output pins.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com System Design Theory

23TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

The PTO manages transitions from Idle to Active and vice-versa based on whether or not any commands
are being executed. So after moving the PTO to the idle state, the host side driver only needs to write
commands to the command buffer (P1_BUF0 and P1_BUF1 locations) to initiate pulse train execution.

The step generator code for each PTO mode is different, as the pattern of edges on outputs OUTA, OUTB
differs for the count/dir, cw/ccw and quadrature modes. For this reason three variants of the PTO N2HET
program are constructed and during initialization the host side driver loads the correct variant into the
N2HET memory. The step generator code for the Count/Dir mode is shown in Example 12.

Example 12. PTO Step Generator Code Example - Count/Dir Mode

;---
; COUNT/DIR
;---
P1_CUR_DIR ADD {src1=REM, src2=IMM, dest=S, rdest=REM, remote=P1_SCNT, data=00h,hr_data=0h}

P1_DIR_B ADD {src1=REM, src2=ZERO, dest=B, rdest=NONE, data=0, hr_data=0,
smode=lsl, scount=7, remote=P1_CUR_DIR}

P1_S1T ADD {src1=B, src2=ZERO, dest=NONE, data=00h, hr_data=0}
P1_S1BR BR {event=Z, cond_addr=P1_S1A1, next=P1_S1A2}
P1_S1A1 RADM64 {en_pin_action=ON, reg=T, pin=PIN_P1_OA, action=CLEAR, data=2, hr_data=64,

cond_addr=P1_ECMP3, remote=P1_ECMP1, comp_mode=ECMP, next=P1_S2T};
P1_S1A2 RADM64 {en_pin_action=ON, reg=T, pin=PIN_P1_OA, action=SET, data=2, hr_data=64,

cond_addr=P1_ECMP3, remote=P1_ECMP1, comp_mode=ECMP, next=P1_S2T};

P1_S2T ADD {src1=B, src2=ZERO, dest=NONE, data=00h, hr_data=0}

P1_S2BR BR {event=N, cond_addr=P1_S2A1, next=P1_S2BR2}
P1_S2BR2 BR {event=Z, cond_addr=P1_S2A3, next=P1_S2A2}
P1_S2A1 RADM64 {en_pin_action=ON, reg=T,pin=PIN_P1_OB,action=CLEAR, data=1, hr_data=0,

cond_addr=P1_ECMP4, remote=P1_ECMP2, comp_mode=ECMP, next=P1_S3T};
P1_S2A2 RADM64 {en_pin_action=ON, reg=T,pin=PIN_P1_OB,action=SET, data=1,hr_data=0,

cond_addr=P1_ECMP4, remote=P1_ECMP2, comp_mode=ECMP, next=P1_S3T};
P1_S2A3 RADM64 {en_pin_action=OFF, reg=T, pin=PIN_P1_OB, action=CLEAR, data=1, hr_data=0,

cond_addr=P1_ECMP4, remote=P1_ECMP2, comp_mode=ECMP, next=P1_S3T};

P1_S3T
P1_S3A1 MOV64 {en_pin_action=ON, reg=T,pin=PIN_P1_OA, action=CLEAR, data=0, hr_data=0,

cond_addr=P1_ECMP3, remote=P1_ECMP3, comp_mode=ECMP, next=P1_S4T};
P1_S3A2 MOV64 {en_pin_action=ON, reg=T, pin=PIN_P1_OA, action=CLEAR, data=0, hr_data=0,

cond_addr=P1_ECMP3, remote=P1_ECMP3, comp_mode=ECMP, next=P1_S4T};

P1_S4T ADD {src1=B, src2=ZERO, dest=NONE, data=00h, hr_data=0}
P1_S4BR BR {event=N, cond_addr=P1_S4A1, next=P1_S4A2}
P1_S4A1 MOV64 {en_pin_action=OFF,reg=T,pin=PIN_P1_OB,action=CLEAR,data=0,hr_data=0,

cond_addr=P1_UPD_A,remote=P1_ECMP4,comp_mode=ECMP,next=P1_S3TM};
P1_S4A2 MOV64 {en_pin_action=OFF,reg=T,pin=PIN_P1_OB,action=CLEAR,data=0,hr_data=0,

cond_addr=P1_UPD_A,remote=P1_ECMP4,comp_mode=ECMP,next=P1_S3TM};
P1_S3TM ADD {src1=R, src2=T, dest=S, data=0, hr_data=0, rdest=REM, remote=P1_ECMP4}
P1_SCNT ADD {src1=R, src2=ZERO, dest=R, data=0, hr_data=0, smode=lsr, scount=1}
P1_S4TM SUB {src1=S, src2=R, dest=NONE, data=0, hr_data=0,

rdest=REM, remote=P1_ECMP3, next=P1_END}
;---
; COUNT/DIR
;---

The step generator code begins by determining the current direction and storing it into register B
(P1_CUR_DIR and P1_DIR_B). For count/dir mode, the direction is either positive (forward), negative
(reverse) or zero in the case of a pure time delay with no steps. The addition performed in the instruction
P1_CUR_DIR on the remote location P1_SCNT is used in quadrature mode to cycle either forward or
backward through four different states of the quadrature output. It is not used in count/dir mode or in
cw/ccw mode, but in an effort to keep the code structure the same across all three modes this operation is
still performed even though it does not change the output sequence.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

System Design Theory www.ti.com

24 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

With the direction loaded into register B, the transitions (but not the actual transition times) for four
different events are computed. The code beginning with P1_S1T determines whether to initially pulse the
OUTA pin high (in case the direction is non-zero, i.e. forward or reverse) or to leave the OUTA pin low (in
case the direction indicates a pure time delay with no stepping action).

In a similar manner, the code beginning with P1_S2T determines whether to initially drive OUTB high
(forward direction), low (reverse direction), or to do nothing to OUTB in case the command is for a pure
time delay. The last condition is implemented by setting 'en_pin_action=OFF' in the instruction at
P1_S2A3.

At P1_S3T no test is performed because in the middle of the pulse it is safe to always drive the OUTA pin
low. If it is already low in case of a pure time delay, there will be no transition on the pin. Otherwise this
event will reset the OUTA pin halfway through the pulse width so that the next step may begin with a
rising edge on OUTA.

The code at P1_S4T configures a final compare, but with no pin action (en_pin_action=OFF) for the
OUTB pin. This comparison is used for timing purposes; to determine when the pulse completes and
when it is time to begin processing the next step. But in the count/dir mode; the 'dir' pin updates at most
once per pulse period therefore in this mode the pin action is always disabled for this event.

Finally the timing of these events must be computed. The time delay of the first event on each pin is set to
+2 HET loop resolution periods for the OUTA pin and +1 HET loop resolution periods for the OUTB pin.
This provides approximately 1.16 µs of fixed setup time between the direction signal and the rising out of
the count pulse for the receiver. The setup time can be increased if needed by adjusting the data values at
P1_S1A1, and P1_S1A2.

The final event is always scheduled with an offset of the computed pulse width (P1_S3TM). The event that
drives the OUTA pin low is then scheduled for an offset of half of the period so that the duty cycle on the
COUNT output stays approximately at 50%. This is handled by P1_SCNT (divide by 2) and P1_S4TM
(subtracts half the pulse width from the computed end of the pulse and sets the third event time based on
this value.

The step generator code just described is executed with the pulse width loaded into register R and current
count value loaded into register T. The initial pulse width is extracted directly from the command buffer but
subsequent pulse widths within the same command must be computed.

The current step width is computed according to the equations described in Section 4.2.1. For the division,
a simple restoring division algorithm was implemented according to the algorithm described in Computer
Arithmetic Algorithms [2]. Non-Restoring and signed division subroutines were also tested for the N2HET,
but the acceleration gained per iteration was not enough to compensate for the additional cycles needed
for the final corrections. Also the restoring division algorithm requires the fewest instructions which is
important when N2HET memory resources are limited.

4.2.4 PTO Step Execution Implementation
The PTO step execution block is very simple. The code for this function is shown in Example 13

It begins with a free running counter, a counter that counts up to the maximum value of 0x1FFFFFFh and
rolls over to 0x0000000.

The counter is followed by one ECMP instruction for each output pin (P1_ECMP1 and P1_ECMP2). While
the block diagram shows two output comparators, the N2HET architecture has a fundamental requirement
that only one high resolution instruction is executed per pin per loop resolution period. So the first two (in
order of count value) compare points are loaded directly into the ECMP instructions for pins OUTA and
OUTB. The second compare points are loaded into the MOV64 instructions at P1_ECMP3 and
P1_ECMP4. These instructions act like a shadow register for the actual compare register. When the
compare register matches, the MOV64 instruction updates the ECMP instruction with the compare value
and type of compare (pin number, pin action) for the subsequent comparison.

Note that the range of the CNT instruction is actually 32-bits once the high-resolution structures are
included, but the CNT instruction only refers to the upper 25 bits of loop count. The ECMP that follow
compare the upper 25 bit loop count as well as the lower 7 bits of hi-resolution count.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
http://www.ecs.umass.edu/ece/koren/arith/
http://www.ecs.umass.edu/ece/koren/arith/

www.ti.com System Design Theory

25TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Example 13. PTO Step Execution and Free Running Counter

;---
; Free Running Counter
;---
P1_TBASE CNT { comp=GE, reg=T, max=1FFFFFFh, data=1FFFFFFh};

;---
; Counter Compare Function for pins P1_OA and P1_OB
;---
P1_ECMP1 ECMP {en_pin_action=ON,reg=T,pin=PIN_P1_OA,action=CLEAR,data=0,hr_data=0,

cond_addr=P1_ECMP2,hr_lr=high, next=P1_ECMP2}

P1_ECMP2 ECMP {en_pin_action=ON,reg=T,pin=PIN_P1_OB,action=CLEAR,data=0,hr_data=0,
cond_addr=P1_UPD_A,hr_lr=high, next=P1_DIVST}

P1_ECMP3 MOV64 {en_pin_action=ON,reg=T,pin=PIN_P1_OA,action=CLEAR,data=0,hr_data=0,
cond_addr=P1_ECMP3,remote=P1_ECMP1,comp_mode=ECMP,next=P1_ECMP2}

P1_ECMP4 MOV64 {en_pin_action=ON,reg=T,pin=PIN_P1_OB,action=SET, data=0,hr_data=0,
cond_addr=P1_UPD_A,remote=P1_ECMP2,comp_mode=ECMP,next=P1_DIVST}

4.2.5 PTO Host Side Driver Implementation
The PTO Host Side driver is packaged as a library project. This project is located in <install
dir>\ccs_proj\pto_common (See Section 6 for an explanation of the firmware installation process and
directory structure).

When including the PTO function in your application you may include the compiled library pto.lib at link
time and use include the header file pto.h in your application code. The library includes four different
N2HET programs (one for each PTO mode plus a 'null' program to put the N2HET into an idle state until
the PTO function is initialized).

The file pto.c can be studied as an example of how the header file that is output by the HET assembler
can be used from within accompanying host side driver to access the structures within a HET program.
For example, Example 14 shows the code for the function ptoRetVal_t ptoCmdSubmit(ptoInst_t ptoNum,
ptoCmd_t cmd).

This function submits a PTO command by writing the two 32-bit values representing the command to the
data fields of the instructions P1_BUF0 and P1_BUF1 (as explained in Section 4.2.2). The function that
performs this task includes the header files output by the HET assembler and uses the data structures
defined to access fields of the individual instructions symbolically.

Example 14. Host Side Driver Function for PTO Command Submission

#include "HL_reg_het.h"
#include "pto_null.h"
#include "pto_quadrature.h"
#include "pto_countdir.h"
#include "pto_cwccw.h"
#include "pto.h"
#include "std_nhet.h"

ptoRetVal_t ptoCmdSubmit(ptoInst_t ptoNum, ptoCmd_t cmd)
{

volatile unsigned int *pBuf0;
volatile unsigned int *pBuf1;

ptoRetVal_t retval = ptoRetValOK;

/* Mark this as a new command */
cmd.ptoCmdBuf1 |= PTO_CMD_NEW;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

System Design Theory www.ti.com

26 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Example 14. Host Side Driver Function for PTO Command Submission (continued)
switch(ptoNum)
{
case pto1:

switch (g_ptoMode[pto1])
{
case ptoModeDisable:

break;
case ptoModeCountDir:

pBuf0 = &e_HETPROGRAM5_UN.Program5_ST.P1_BUF0_5.memory.data_word;
pBuf1 = &e_HETPROGRAM5_UN.Program5_ST.P1_BUF1_5.memory.data_word;
break;

case ptoModeCwCcw:
pBuf0 = &e_HETPROGRAM6_UN.Program6_ST.P1_BUF0_6.memory.data_word;
pBuf1 = &e_HETPROGRAM6_UN.Program6_ST.P1_BUF1_6.memory.data_word;
break;

case ptoModeQuadrature:
pBuf0 = &e_HETPROGRAM7_UN.Program7_ST.P1_BUF0_7.memory.data_word;
pBuf1 = &e_HETPROGRAM7_UN.Program7_ST.P1_BUF1_7.memory.data_word;
break;

default:
retval = ptoRetValInvalidMode;
break;

}
break;

default:
retval = ptoRetValInvalidInstance;
break;

}

while ((*pBuf1 & PTO_CMD_NEW) != 0);
*pBuf0 = cmd.ptoCmdBuf0;
*pBuf1 = cmd.ptoCmdBuf1;

return retval;
}

4.2.6 PTO Execution of Trapezoidal Motion Profile
An example output waveform from the PTO in count/direction mode can be found in Figure 13. The time
intervals captured by the logic analyzer were processed by a MATLAB® script that plots the effective
frequency versus time for each pulse overlaid with simulated values for the same profile. The resulting plot
is shown in Figure 14. The application code that creates this example by using the PTO library is very
simple as shown in Example 15.

Figure 13. Example of PTO Output of Trapezoidal Motion Profile

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com System Design Theory

27TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 14. Plot of Measured Trapezoidal Motion Profile versus Simulated Profile

Example 15. Application Example for Creation of Trapezoidal Profile

/*
* main.c
*/

#include "HL_sys_common.h"
#include "HL_het.h"
#include "pto.h"

/* Function Prototypes from pto.h for reference:
* ptoRetVal_t ptoInit(ptoInst_t ptoNum, ptoMode_t ptoMode);
* ptoRetVal_t ptoStart(ptoInst_t ptoNum);
* ptoRetVal_t ptoCmdSubmit(ptoInst_t ptoNum, ptoCmd_t cmd);
*
* ptoRetVal_t ptoCmdCreate(ptoCmd_t *cmd, uint32_t icnt, uint32_t nstp, ptoDir_t dir, ptoAcc_t acc);
* - icnt = initial pulse width (in counts of N2HET High Resolution Clocks
* - nstp = number of steps to execute in the command
* - dir = direction of steps (forward, reverse, or pure time delay)
*/ - acc = acceleration type (accelerate, decelerate, or zero acceleration/constant speed)

#define NUMCMD 3
ptoCmd_t cmdList[NUMCMD];

int main(void) {
int I;
hetInit();
ptoInit(pto1, ptoModeCountDir);

ptoCmdCreate(&cmdList[0], 1000000, 50, ptoDirFwd, ptoAccLinAcc);
ptoCmdCreate(&cmdList[1], 105132, 10, ptoDirFwd, ptoAccZero);
ptoCmdCreate(&cmdList[2], 105132, 50, ptoDirFwd, ptoAccLinDec);

ptoStart(pto1);
for (I = 0; I < NUMCMD; I++) {
ptoCmdSubmit(pto1, cmdList[i]);

}
while(1);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Getting Started Hardware www.ti.com

28 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

5 Getting Started Hardware

Figure 15. Hardware Block Diagram

The reference platform comprises of two different pieces of hardware as shown in Figure 15:
1. RM57L843 Launchpad - LAUNCHLX2-RM57L
2. Test Board (schematics, and design files documented in Section 9.

In addition, either jumper wires or a 20-pin ribbon cable, approximately 6" long, is needed to connect the
PTO outputs to the HSC inputs in order to run the HSC tests. This is because the PTO module is used to
create stimulus for the HSC module. If a 20-pin ribbon cable is used with the test board, it should have
sockets on both ends. The sockets should be 2 rows, 10 positions each, with 0.100" pin to pin spacing.
Suitable cables can be purchased from Mouser (517-1M-1010-020-6), Newark/Element 14 (FC20150-0),
Digikey (H3CCH-2006G-ND), or many other electronic component distributors.

5.1 Hardware Setup
To set up the reference-design hardware, follow the steps listed in this section.

5.1.1 Step 1: RM57L LaunchPad Installation
Follow the instructions on the printed quick start guide that is included with the LaunchPad to setup your
LaunchPad and Code Composer Studio™. You will want to verify that you can connect to the LaunchPad,
download at least one example project, and debug the project with Code Composer studio before trying
the application code included in this TI Design. Additional help getting started with the LaunchPad may be
found on the LAUNCHXL2-RM57L Wiki.

If you only wish to run the example HSC / PTO applications without capturing the output on a logic
analyzer, then you can skip the remaining steps involving the test board. However, if you chose to skip the
test board steps you should make the connections outlined in Table 4 instead.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
http://www.mouser.com/ProductDetail/3M-Electronic-Solutions-Division/1M-1010-020-3365-0060-00-AB-00-0/?qs=sGAEpiMZZMsvnOgGvSjZeJhER1OS37svViujChUD3iY%3d
http://www.newark.com/amphenol/fc20150-0/lead-2-54mm-f-f-150mm-20way/dp/46W1737
http://www.digikey.com/product-detail/en/assmann-wsw-components/H3CCH-2006G/H3CCH-2006G-ND/1218561
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L

www.ti.com Getting Started Hardware

29TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

(1) No physical jumper required since input and output signals share the same pin.

Table 4. Optional Connections: Only Make if Skipping Steps 2 - 6

HSC Signal N2HET1
PIN

LAUNCHXL2-RM57L Locations
to Jumper Across N2HET2

Pin
PTO

Signal
GIO
Signal

N2HET1 N2HET2
INA 0 J10-20 J9-6 1 OA -
INB 2 J4-1 J9-17 3 OB -
INW 4 J1-9 J9-11 5 - Out 1
INX 6 J1-3 J9-20 7 - Out 2
INY 8 J8-3 J9-27 9 - Out 3
INZ 10 J8-1 J9-24 11 - Out 4
OA 1 J10-21 (1) J10-21 (1) 8 - In 1
OB 3 J10-22 (1) J10-22 (1) 10 - In 2

5.1.2 Step 2 (Optional): Add Optional Sockets onto RM57L LaunchPad
The RM57L843 LaunchPad (part # LAUNCHXL2-RM57L) ships with connectors J5/J7, J8/J6, J9, and J10
unpopulated due to cost constraints. However, for this TI design these connectors must be purchased and
populated. Figure 16 shows what the LaunchPad looks like from the bottom side when these sockets are
added.

Figure 16. Bottom Side of LaunchPad with Optional Sockets Added

For J5, J6, J7, and J8, while these connectors are listed in the boards schematic as four individual 1x10
connectors with 0.100" pin spacing. However we recommend using two 2x10 connectors. One 2x10
connector can be used for J5 and J7, the other for J8 and J6. For these connector locations, a 2x10
socket should be used and assembled on the bottom side of the LaunchPad matching the assembly
orientation of J1,J3 and J2,J4.

Suitable part numbers for this purpose are: Major League Electronics CRD-081413-A-F or Samtec SSQ-
110-03-T-D. These receptacles have extended through-hole pin heights to match the booster pack
standard and will allow stacking additional booster packs on both sides of the LaunchPad. However, this
feature is not necessary for this TI design so a compatible receptacle with shorter pin lengths may be
substituted if desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Getting Started Hardware www.ti.com

30 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

For J9, and J10, a 1x50 pin receptacle (also 0.100" pitch) is required. A suitable part number is Sullins
SFH11-PBPC-D25-ST-BK. These connectors should also be assembled on the bottom side of the PCB.

5.1.3 Step 3 (Optional): Assemble Test Board
The test board should be assembled with headers J1-J10 on the top side of the board, to mate with the
LaunchPad receptacles. Headers J11-J22 should be mounted on the back side of the PCB so that when
the two boards are mated, logic analyzer and pattern generator pods may be plugged into J11-J22 as
desired. Figure 17 shows the top side of the test board once assembled.

Figure 17. Top Side of Assembled Test Board

For this design, only J1-J10, J11, J12, J16 and J17 need to be populated; although populating all headers
will allow the same test board to be reused for future N2HET based projects.

5.1.4 Step 4 (Optional): Connect LaunchPad and Test Board
The LaunchPad should now be mounted onto the top side of the test board. Connections should be made
such that the LaunchPad J1-J10 socket mate with the test board header of the same number. For
example J1 mates with J1, J2 with J2, and so on up to J10. Make sure that your orientation of the two
boards matches the orientation shown in Figure 18. Also be careful to make sure that the pin 1 locations
of each connector match as it is easy to be misaligned.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Getting Started Hardware

31TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 18. LaunchPad Connected to Test Board

5.1.5 Step 5 (Optional): Connect Ribbon Cable To Test Board
On the back side of the test board, connect headers J16 to J17 with a 20-pin ribbon cable or with
individual jumper wires. The connections should be made straight across meaning J16-1 to J17-1, J16-2
to J17-2, etc... Figure 19 shows a ribbon cable shorting J16 and J17.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Getting Started Hardware www.ti.com

32 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 19. Ribbon Cable Plugged into Test Board J16 and J17

5.1.6 Step 6 (Optional): Connect Logic Analyzer Pods to Test Board
A logic analyzer may be connected to headers J11 and J12 on the test board in order to monitor the
output of the test cases. This is optional but a logic analyzer was used to produce some of the results
described in Section 8.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Getting Started Firmware

33TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

6 Getting Started Firmware
This section covers installing the firmware for the design on a windows machine.

To use the firmware you will need to have Code Composer Studio installed. You also will need the HET
IDE. Download links for both packages are provided in Section 10. The HET IDE installs the HET
assembler which is invoked during the 'clean' build target.

To rebuild the individual HET programs, you will need an environment that provides both GNU Make and
the GNU M4 macro processor. For this design we used the MinGW msys 1.0 environment to provide both
of these tools.

The specific version of each of these software tools that was used during the creation of this design is
listed in Table 5.

Table 5. Software Tool Versions Used in Design

Tool Version For Additional Information
Code Composer Studio 6.1.1 http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6

HET IDE 3.05.01 http://www.ti.com/tool/het_ide
MinGW msys 1.0 http://www.mingw.org/wiki/MSYS

GNU M4 1.4.16 http://www.gnu.org/software/m4/m4.html

6.1 Installing the Firmware
An installer is provided for this design. Download and execute the installer from TIDM-HAHSCPTO. The
default installation directory for all files is C:\ti\Hercules\HAHSCPTO\<version>. We will refer to the
actual install folder as <install dir>.

The firmware installer creates the following subdirectories under the main installation directory:
• hsc
• pto
• ccsproj

In the folder <install dir>\hsc\het\ there are subdirectories that contain the three versions of the HSC
N2HET program:
• hsc_countdir
• hsc_cwccw
• hsc_quadrature

Additionally there are directories for the unit test of each of the hsc sub-blocks:
• debounce_test
• counter_countdir_test
• counter_cwccw_test
• counter_quadrature_test
• output_compare_test

Finally, the subdirectory:
• source

contains the macros (GNU M4 language) and a makefile that creates each of the previously listed folders.
Also created are HET IDE projects that allow each program to be tested in simulation on the HET IDE.

The structure of the<install dir>\pto\het\folder mirrors that of the hsc folder, except there are is only one
unit test for the division algorithm.

The <install dir>\ccsproj\ folder is the starting point for work with this design. In this folder are CCS
projects for each of the hsc/pto applications and for their unit tests. In the next section we will discuss how
to import these projects into a CCS workspace. After you have imported these projects you can build and
run the project on the test hardware.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
http://www.mingw.org/
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6
https://www.ti.com/tool/het_ide
http://www.mingw.org/wiki/MSYS
http://www.gnu.org/software/m4/m4.html
https://www.ti.com/tool/TIDM-HAHSCPTO

Getting Started Firmware www.ti.com

34 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

6.2 Running the Firmware
This section explains how to import the firmware projects into Code Composer Studio and run them on the
RM57L LaunchPad.

6.2.1 Step 1: Import CCS Projects Into Your Workspace
It is recommended that you create a new CCS workspace for this design because many individual projects
will be imported. You can find information about creating a CCS workspace online at
http://processors.wiki.ti.com/index.php/Projects_and_Build_Handbook_for_CCS#Workspaces.

Launch CCS, and make sure the Project Explorer pane is visible. From the main menu, select Project-
>Import CCS Projects as shown in Figure 20

Figure 20. Import CCS Projects Menu Item

When the Select CCS Projects to Import window appears, as shown in Figure 21:
1. Chose the 'Select search-directory' option and navigate to the <install dir> folder.
2. Click on the 'Select All' button to select all the projects that CCS finds under the <install dir> folder

and its subdirectories.
3. Click on the 'Finish' button and CCS will import all of the projects into the current workspace. Note that

'Copy projects into workspace' should not be selected. The sources for this project will be maintained
under the <install dir> folder.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
http://processors.wiki.ti.com/index.php/Projects_and_Build_Handbook_for_CCS#Workspaces

www.ti.com Getting Started Firmware

35TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 21. Importing projects from the <install dir>\ccs_projs folder.

6.2.2 Step 2: Build all of the imported projects
Next, build all of the imported projects. In the Project Explorer pane, select all of the projects then right
click and select 'Build Project' from the context menu as shown in Figure 22. It may take a few minutes to
complete the build, especially if the runtime support library needs to be built as well.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Getting Started Firmware www.ti.com

36 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 22. Build all of the imported projects

6.3 Run the individual test projects after completing the test setup
Each project should now be ready to download into the LaunchPad and execute / debug. Before doing
this, please refer to Section 7 where the instructions for setting up the test hardware and a description of
what each test project does can be found.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Test Setup

37TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

7 Test Setup
The setup to produce the test results in Section 8 is the same as described in Section 5.1. All of the
optional steps involving the test board should be completed. Figure 23 is a picture of the test setup used
to capture the results reported in this design guide. For this test setup, the LaunchPad can be powered
through USB, no external power supply is required. However as the figure shows, an external XDS560v2
emulator was used to load the test firmware into the target. This was used strictly for the sake of speed
and the convenience of the available network connection; the LaunchPad XDS110 on board emulator
could be used instead of the XDS560v2 that is pictured.

The Logic Analyzer that was used to capture the test results for the PTO tests is an HP16700A series
mainframe with an HP16715A 167MHz State/667MHz Timing logic analyzer card. The test board is also
designed to be able to drive the N2HET pins using an HP16522A pattern generator but none of the tests
developed for this design actually make use of that capability.

Figure 23. Test Setup

The CCS projects for each test are described in Table 6. The tests build upon each other according to the
order of the table. For example first the PTO is tested, then the PTO is used to create stimulus to test the
HSC. The HSC tests build up the HSC beginning with the counter tested in each counting mode, and then
adding the input capture, output compare, and auxiliary input functional blocks in stages until the complete
HSC application is tested.

Table 6. Test Projects

Project Name Test Method Targets Description

division_test
Self Checking,

Comparison against
host CPU

N2HET Integer Division
algorithm used by PTO to
compute width of successive
pulses during acceleration

Tests the 32-bit Division Algorithm used by the
PTO. Same values are computed by the ARM

CPU and N2HET. Number of errors are counted.
Test passes when complete and err_cnt variable

= 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Test Setup www.ti.com

38 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Table 6. Test Projects (continued)
Project Name Test Method Targets Description

debounce_test1 Logic Analyzer / Visual
Check

Software Debounce of HSC
Auxiliary Inputs

The event detection logic (rise, fall, high, low) for
each auxiliary input is output onto pins monitored
with the logic analyzer. The debounce value is set
to increasingly larger values for each pin. A fixed

PWM frequency is applied to all pins. The
captured output is visually checked.

debounce_test2 Logic Analyzer / Visual
Check

Software Debounce of HSC
Auxiliary Inputs

pto_countdir_app Logic Analyzer /
MATLAB Script PTO Count/Dir Mode Series of commands 10 commands with different

direction, acceleration/deceleration, initial pulse
width, and number of steps issued to PTO and

results captured by logic analyzer. Logic analyzer
results are saved to a file and processed by
MATLAB script to produce a plot of the PTO
output frequency versus time, as well as the

expected values based on a simulation of the
same commands.

pto_cwccw_app Logic Analyzer /
MATLAB Script

PTO Clockwise/Counter
Clockwise Mode

pto_quadrature_app Logic Analyzer /
MATLAB Script PTO Quadrature Mode

counter_test1 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Count/Dir Mode x1 Tests: Hysteresis, Counter Range, Rollover and

Saturation Modes, Counter Enable, Counter
Reset, Counter Sync, Counter Saturation resulting

in invalid counter, Counter sync restoring valid
counter status. Uses the PTO in the same mode
to create stimulus and a known number of steps.

Verifies that the counter value is correct after
each series of steps. All triggers for Sync, Enable,
Reset are issued by software. The Auxiliary Input
Block, Output Compare Block, and Input Capture
block are not included so that the extra N2HET

RAM and IO pins can be used to output the
counter value for capture on the logic analyzer

(for debug purposes).

counter_test2 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Count/Dir Mode x2

counter_test3 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Cw/Ccw Mode x1

counter_test4 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Cw/Ccw Mode x2

counter_test5 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Quadrature Mode x4

counter_test6 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Quadrature Mode x2

counter_test7 Self Checking, PTO as
stimulus for HSC

HSC Counter Block -
Quadrature Mode x1

capture_test1 Self Checking, PTO as
stimulus for HSC

HSC Counter + Capture
Blocks, Count/Dir x1 Mode

Repeats all counter tests. Adds tests to trigger
Capture A, Capture B both individually and

simultaneously and checks that the capture value
is correct.

compare_test1 Self Checking, PTO as
stimulus for HSC

HSC Counter + Capture +
Compare Blocks, Count/Dir
x1 Mode

Repeats all capture_test1 tests. Adds tests for
Output Compare on OUTA, OUTB. Sets up two

compare registers for each pin. Steps the counter
through each range forward and backward, to
make sure that the output pin changes state

correctly as each compare threshold is crossed.

hsc_app Self Checking, PTO as
stimulus for HSC

HSC Counter + Capture +
Compare Block, and
Auxiliary Input Blocks,
Count/Dir x1 Mode

Complete HSC app. Removed debug output of
counter value. Repeats all compare_test1 items
and exercises both software triggers and triggers

through auxiliary inputs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Test Data

39TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

8 Test Data

8.1 Self Checking Tests
All of the self checking tests described in Table 6 complete with an errcount = 0. These tests should be
run and stopped when completed. They stop at a while(1); statement at the end of the main() function.
The errcount value can be evaluated in an expression window and confirmed to be 0, as shown in
Figure 24 and marked with a '1'. The while(1); loop is marked with a '2' in this figure. Of course the logic
analyzer can be used to capture the test execution on the pins if a visual check is desired as well as the
self check.

Figure 24. Successful Completion of Self-Checking compare_test1

8.2 Debounce Test Results
The tests debounce_test1 and debounce_test2 from Table 6 are checked visually by inspecting the
logic analyzer trace results.

These tests simply debounce and run the auxiliary input edge/level detection algorithm for each pin. Then
the test framework adds code to output each edge / level detection bit on a spare HET pin for monitoring
purposes. Note that this extra function provided by the framework is used only for the unit test of the
auxiliary inputs block and is not generated as part of the final HSC application.

Figure 25 shows the waveform generated by the project debounce_test1, with arrows drawn on each
waveform to correlate the rising edge of the input to the corresponding rising edge output pin. Each of the
pins INW (Green), INX (Orange), INY (Purple), and INZ (Red) are plotted along with the outputs indicating
detection of a rising edge (_R), high level (_H), falling edge (_F), and low level (_L) for each pin in the
same color.

For debounce_test1, the debounce period for pins INW, INX, INY, and INZ respectively are set to 3, 2, 1,
and 0 N2HET loop resolution periods. The test input on each pin is the same waveform with a 5 N2HET
loop resolution period high pulse followed by a 4 N2HET loop resolution period low pulse. In this the input
pulse width is larger than the filter width for all of the input pins, but the filter delay is clearly visible and
increases with increasing filter width. Also visible are the correct decoding of the Rising and Falling Edge
as well as High and Low states. (High and Low were chosen to exclude the loop where the edge is
detected, because the triggering equations allow the two conditions to be combined easily in the first level
'OR' logic.)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Test Data www.ti.com

40 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 25. Debounce Test 1 Waveform

Figure 26 shows the waveform generated by the project debounce_test2. For debounce_test1, the
debounce period for pins INW, INX, INY, and INZ respectively are set to 5, 4, 3, and 2 N2HET loop
resolution periods. The input signal is the same as in debounce_test1. The INW(green) result shows that
both the 5 loop resolution high phase and 4 loop resolution low phase of the input signal are filtered by
INW with filter value set to 5, because neither the high nor the low phase exceed the filter length. The
INX(orange) signal with filter length of 4 only passes the high phase of the input pulse that is 5 cycles (1
cycle longer than the 4 cycle filter width). The low phases are completely blocked. Therefore only an initial
rising edge is detected and subsequently the pin is reported as high. INY and INZ with filter lengths of 3
and 2 repetitively pass through both phases of the input signal as expected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Test Data

41TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 26. Debounce Test 2 Waveform

8.3 PTO Test Results
The commands issued to the PTO for the three projects pto_countdir_app, pto_cwccw_app,
pto_quadrature_app are listed in Table 7 . This is not an actual motion profile but a series of commands
meant to test the PTO.

Table 7. Commands Sequence for PTO Tests

Command # Initial Step
Width

Number of
Steps Direction Acceleration

1 2000 10 Forward Linear Deceleration
2 6000 10 Reverse Linear Acceleration
3 8192 16 Forward Constant Speed
4 4096 11 Reverse Linear Deceleration
5 65536 1 Delay Only Constant Speed
6 4608 10 Forward Linear Acceleration
7 65536 1 Delay Only Constant Speed
8 8192 10 Reverse Linear Acceleration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Test Data www.ti.com

42 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 27 shows the resulting plot of the measured versus simulated profile for the count/dir mode. Note
how the measured and simulated results match exactly and how the acceleration and decelerations are
linear. The captured output waveform that was used to make this plot is shown Figure 28. Figure 29 and
Figure 30 show the same result in cw/ccw mode. Finally, Figure 31 and Figure 32 show the same result in
quadrature mode.

Figure 27. PTO Test Sequence - Measured versus Simulated Data - Count/Dir Mode

Figure 28. PTO Test Sequence Waveform - Count/Dir Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Test Data

43TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 29. PTO Test Sequence - Measured versus Simulated Data - Cw/Ccw Mode

Figure 30. PTO Test Sequence Waveform - Cw/Ccw Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

Test Data www.ti.com

44 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Figure 31. PTO Test Sequence - Measured versus Simulated Data - Quadrature Mode

Figure 32. PTO Test Sequence Waveform - Quadrature Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43

www.ti.com Design Files

45TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

9 Design Files

9.1 Schematics
To download the test board schematics in PDF format, see the design files at TIDM-HAHSCPTO.

Schematics for the LaunchPad are available for download at
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L.

9.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDM-HAHSCPTO. This BOM includes all
the components for both the LaunchPad and the test board.

9.3 Layer Prints
To download the test board layer plots, see the design files at TIDM-HAHSCPTO.

9.4 Altium Project
To download the test board Altium project files, see the design files at TIDM-HAHSCPTO.

CAD files for the LaunchPad are available (In EAGLE format) at
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L.

9.5 Layout Guidelines
The test board is entirely passive and simply organizes the N2HET signals available on the LAUNCHXL2-
RM57L launchpad two booster pack sites and expansion headers into groups of signals suitable for direct
connection to logic analyzer and pattern generator pods.

9.6 Gerber Files
To download the Gerber files, see the design files at TIDM-HAHSCPTO.

Gerber files for the LaunchPad are available (In EAGLE format) at
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L.

9.7 Assembly Drawings
To download the assembly drawings, see the design files at TIDM-HAHSCPTO

9.8 Software Files
To download the software files, see the design files at TIDM-HAHSCPTO

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
https://www.ti.com/tool/TIDM-HAHSCPTO
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L
https://www.ti.com/tool/TIDM-HAHSCPTO
https://www.ti.com/tool/TIDM-HAHSCPTO
https://www.ti.com/tool/TIDM-HAHSCPTO
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L
https://www.ti.com/tool/TIDM-HAHSCPTO
http://processors.wiki.ti.com/index.php/LAUNCHXL2-RM57L
https://www.ti.com/tool/TIDM-HAHSCPTO
https://www.ti.com/tool/TIDM-HAHSCPTO

References www.ti.com

46 TIDUA43–June 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

High Availability Industrial High Speed Counter (HSC) / Pulse Train Output
(PTO)

Hercules, SafeTI, LaunchPad, Code Composer Studio are trademarks of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
MATLAB, MathWorks are registered trademarks of The MathWorks, Inc.
All other trademarks are the property of their respective owners.

10 References

1. Embedded.com, Generate stepper-motor speed profiles in real time, David Austin,
http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-
speed-profiles-in-real-time

2. Koren, Israel. Computer Arithmetic Algorithms, Brookside Court Publishers, Amherst, Massachusetts,
1998. ISBN 0-13-151952-2

3. Texas Instruments, High Performance Pulse Train Output (PTO) With PRU-ICSS for Industrial
Applications, Thomas Mauer, Ganesh Mohan Nelliparambil, and Ingolf Frank,
www.ti.com/lit/pdf/tidu707

4. Code Composer Studio Download page, http://processors.wiki.ti.com/index.php/Download_CCS
5. HalCoGen, Hardware Abstraction Layer Code Generator for Hercules MCUs, Download Page

http://www.ti.com/tool/halcogen
6. High End Timer Integrated Development Environment, HET_IDE, Download Page

http://www.ti.com/tool/het_ide
7. RM57L843 LaunchPad, http://www.ti.com/tool/LAUNCHXL2-RM57L
8. RM57Lx 16/32 RISC Flash Microcontroller Technical Reference Manual,

http://www.ti.com/lit/pdf/spnu562
9. Datasheet, RM57L843 Hercules™ Microcontroller Based on the ARM® Cortex®-R Core
10. MathWorks® MATLAB, http://www.mathworks.com/products/matlab/

11 About the Author
ANTHONY SEELY is an Application Engineer at Texas Instruments, where he is responsible for
developing applications for the Hercules family of high-performance microcontrollers. He has over twenty
years of experience with Texas Instruments in embedded processing, including automotive
microcontrollers and digital signal processors. He earned an MSEE degree from the University of
Massachusetts, Amherst and a BSEE degree from the University of Houston.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUA43
http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time
http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time
http://www.ecs.umass.edu/ece/koren/arith/
https://www.ti.com/lit/pdf/tidu707
http://processors.wiki.ti.com/index.php/Download_CCS
https://www.ti.com/tool/halcogen
https://www.ti.com/tool/het_ide
https://www.ti.com/tool/LAUNCHXL2-RM57L
https://www.ti.com/lit/pdf/spnu562
https://www.ti.com/lit/pdf/spns215
http://www.mathworks.com/products/matlab/

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (‘TI”) reference designs are solely intended to assist designers (“Designer(s)”) who are developing systems
that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a
particular reference design.
TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other
information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and
no additional obligations or liabilities arise from TI providing such reference designs or other items.
TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.
Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in
designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of
its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable
requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement
safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the
likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems
that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.
Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special
contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause
serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such
equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and
equivalent classifications outside the U.S.
Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end
products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR
INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right,
copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS
ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF
THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE
WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS
DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT,
SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products. Additional terms may apply to the use or sale of other types of TI products and services.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

https://www.ti.com/sc/docs/stdterms.htm

	High Availability Industrial High Speed Counter (HSC) / Pulse Train Output (PTO)
	1 Key System Specifications
	2 System Description
	2.1 RM57L843ZWTT with Dual N2HET Timing Coprocessors
	2.2 LAUNCHXL2-RM57L: RM57L843ZWTT LaunchPad

	3 Block Diagram
	3.1 N2HET Based High Speed Counter
	3.1.1 HSC Counter Block
	3.1.2 HSC Auxiliary Input Block
	3.1.3 HSC Output Compare Block
	3.1.4 HSC Input Capture Block

	3.2 N2HET Based Pulse Train Output
	3.2.1 PTO Command Buffer Block
	3.2.2 PTO Command Processor Block
	3.2.3 PTO Step Execution Block

	4 System Design Theory
	4.1 HSC Design
	4.1.1 HSC Counter Block Implementation
	4.1.2 HSC Auxiliary Input Block Implementation
	4.1.3 HSC Output Compare Block Implementation
	4.1.4 HSC Input Capture Block Implementation
	4.1.5 HSC Host Side Driver Implementation

	4.2 PTO Design
	4.2.1 PTO Design Equations
	4.2.2 PTO Command Buffer Block Implementation
	4.2.3 PTO Command Processor Implementation
	4.2.4 PTO Step Execution Implementation
	4.2.5 PTO Host Side Driver Implementation
	4.2.6 PTO Execution of Trapezoidal Motion Profile

	5 Getting Started Hardware
	5.1 Hardware Setup
	5.1.1 Step 1: RM57L LaunchPad Installation
	5.1.2 Step 2 (Optional): Add Optional Sockets onto RM57L LaunchPad
	5.1.3 Step 3 (Optional): Assemble Test Board
	5.1.4 Step 4 (Optional): Connect LaunchPad and Test Board
	5.1.5 Step 5 (Optional): Connect Ribbon Cable To Test Board
	5.1.6 Step 6 (Optional): Connect Logic Analyzer Pods to Test Board

	6 Getting Started Firmware
	6.1 Installing the Firmware
	6.2 Running the Firmware
	6.2.1 Step 1: Import CCS Projects Into Your Workspace
	6.2.2 Step 2: Build all of the imported projects

	6.3 Run the individual test projects after completing the test setup

	7 Test Setup
	8 Test Data
	8.1 Self Checking Tests
	8.2 Debounce Test Results
	8.3 PTO Test Results

	9 Design Files
	9.1 Schematics
	9.2 Bill of Materials
	9.3 Layer Prints
	9.4 Altium Project
	9.5 Layout Guidelines
	9.6 Gerber Files
	9.7 Assembly Drawings
	9.8 Software Files

	10 References
	11 About the Author

	Important Notice

