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TI Designs: TIDA-01429
Automotive Discrete SBC Pre-Boost, Post-Buck With CAN
Reference Design

Description
The TIDA-01429 reference design implements a
discrete system basis chip (SBC) with wide-input
voltage boost circuit with output voltage set to 8-V. The
boost circuit is followed by a wide-input voltage buck
converter with output voltage set to 5-V which used for
powering a controller area network (CAN) transceiver
and a compact, fixed 3.3-V linear drop-out (LDO)
regulator for supplying the C2000™ microcontroller
(MCU). This design has been tested for CISPR 25
radiated emissions per absorber lined shielded
enclosure (ALSE) method, CISPR25 conducted
emissions via the voltage method, and for immunity to
bulk current injection (BCI) per ISO 11452-4, all with
CAN communication operating at 500 KBPS. This
design is a electromagnetic compliance (EMC) vetted,
3-stage power tree with CAN reference design that
can be used in many automotive applications requiring
operation with input voltages as low as 3.5 V.

Resources

TIDA-01429 Design Folder
LM5022-Q1 Product Folder
TPS57140-Q1 Product Folder
TLV713P-Q1 Product Folder
TMS320F28030Q Product Folder
TCAN1042V-Q1 Product Folder
SN74LVC2G06-Q1 Product Folder
SN74AHCT1G04-Q1 Product Folder
CSD17313Q2 Product Folder

ASK Our E2E Experts

Features
• Wide-Input Voltage Adjustable Boost Controller
• Wide-Input Voltage Adjustable Buck Converter
• Low-Input Voltage, Fixed 3.3-V LDO
• CAN Transceiver With Flexible Data-Rate (FD) up

to 5 MBPS
• Passes Class 5 CISPR 25 Radiated Emissions

Using ALSE Method
• Passes Class 4 CISPR 25 Conducted Emissions

Using the Voltage Method
• Passes ISO 11452-4 Bulk Current Injection
• Able to Survive Load Dump Voltages up to 40 V
• Able to Survive Reverse Battery Voltages up to –40

V
• Maintains 5-V and 3.3-V Regulated Supplies

Through Battery Input Voltages Down to 3.5 V

Applications
• Automotive Body Control Module (BCM)
• Automotive Front Camera
• Automotive Head Unit
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https://www.ti.com/product/SN74LVC2G06-Q1
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http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
https://www.ti.com/solution/automotive_central_body_controller
https://www.ti.com/solution/automotive_vision_control
https://www.ti.com/solution/head_unit_aftermarket


System Description www.ti.com

2 TIDUD47A–July 2017–Revised August 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Automotive Discrete SBC Pre-Boost, Post-Buck With CAN Reference Design

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

1 System Description
The TIDA-01429 reference design implements a 3-stage power tree. The first stage is a wide-input voltage
boost controller with an output voltage set to 8.1 V. When the battery-supplied input voltage is greater than
a diode drop above the set output voltage, the boost controller transitions to 0% duty cycle and the input
voltage is passed through the high-side Schottky diode. Therefore, the output voltage of the boost
controller during regulation will always be 8.1 V or higher. For this reason the second stage 5-V buck
converter also needs to be a wide input voltage device. The 5-V supply is used for powering a CAN
physical layer interface and a compact, low-input voltage LDO regulator for creating the 3.3-V rail for the
C2000 MCU. This design has been tested for CISPR 25 radiated emissions per the ALSE method, CISPR
25 conducted emissions per the voltage method, and for immunity to BCI per ISO 11452-4. All of these
EMC tests were performed with CAN communication operating at 500 KBPS. Therefore, this is an EMC-
vetted, 3-stage power tree with CAN reference design that can be used in many automotive applications
requiring operation with input voltages as low as 3.5 V.

The necessity for multiple regulated supply rails is becoming more and more prevalent in automotive as
more MCUs transition from 5 V to 3.3 V. The first-stage boost regulator of this design is strictly used for
boosting the input voltage to the buck converter during low-voltage transients for start and stop or cold
crank scenarios. During nominal vehicle battery voltages the devices transitions to 0% duty cycle
operation and the input voltage is passed to the output through the high-side, Schottky diode. The second
stage buck regulator is a 1.5-A wide input voltage buck converter that takes the output from the first stage
and regulates it down to 5 V. Lastly, the low-input voltage, 150-mA, fixed 3.3-V LDO is used to supply the
MCU.

This reference design is an example implementation of how to create a 8.1-V intermediate supply, a 1.5-A,
5-V supply, and a 150-mA, 3.3-V supply that can handle battery input voltages down to 3.5 V. Example
modules where this power topology and CAN interface can be applicable includes BCMs, multi-mode
radar modules, front camera modules, and head unit modules. This design passes Class 5 radiated
emissions using the ALSE method, Class 4 conducted emissions using the voltage method on both
VBATT and GND, and ISO 11452-4 BCI with greater than 106 dBµA of immunity routing VBATT, GND,
CANH and CANL through the current injection probe.

An SBC is an integrated circuit (IC) that combines many typical building blocks of a system, which
includes transceivers, linear regulators, and switching regulators. While these integrated devices can offer
size and cost savings in a number of applications, the integrated devices do not work in every case. For
applications where an SBC is not a good fit, it might be beneficial to build a discrete implementation of
these aforementioned building blocks thus making a discrete SBC.

1.1 Key System Specifications

Table 1. Key System Specifications

PARAMETER SPECIFICATIONS DETAILS
Input power source (VBATT) Automotive 12-V battery system Section 2.3.1

Operational input voltage range (VBATT) 3.5 V to 40 V Section 2.3.2
Survivable input voltage range (VBATT) -40 V to 40 V Section 2.3.1

Regulated output voltages 5.0 V and 3.3 V Section 2.3.2 and
Section 2.3.3

Maximum 5-V load current 1.5 A Section 2.3.2
Maximum 3.3-V load current 150 mA Section 2.3.3

Form factor Rectangular, 4.0" × 3.0" (101.6 mm × 76.2 mm), 2-layer, 1-oz
copper foil, printed circuit board (PCB)

Section 3.1.1.1 and
Section 4.3

http://www.ti.com
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2 System Overview

2.1 Block Diagram

Figure 1. TIDA-01429 Block Diagram

2.2 Highlighted Products
The TIDA-01429 TI Design features the following eight devices:
1. LM5022-Q1: Automotive, wide-input voltage, non-synchronous, step-up, DC-DC controller
2. TPS57140-Q1: Automotive, wide-input voltage, non-synchronous, step-down, DC-DC converter
3. TLV71333P-Q1: Automotive, low-input voltage, fixed 3.3-V LDO
4. TCAN1042V-Q1: Automotive fault-protected CAN transceiver with CAN FD and IO level shifting
5. TMS320F28030Q: Automotive, high-efficiency 32-bit Piccolo™ MCU
6. SN74LVC2G06-Q1: Automotive, catalog, dual-inverter buffer and driver with open-drain outputs
7. SN74AHCT1G04-Q1: Automotive, 5 V, single inverter gate with transistor-transistor logic (TTL) input

thresholds
8. CSD17313Q2: 30-V N-channel, NexFET™ power MOSFET

For more information on each of these devices, see their respective datasheets in Section 5 or product
folders on www.ti.com.
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2.2.1 LM5022-Q1
The LM5022-Q1 is a high-voltage, low-side, N-channel MOSFET controller ideal for use in boost and
SEPIC regulators. The device contains all of the features needed to implement single-ended primary
topologies. Output voltage regulation is based on current-mode control, which eases the design of loop
compensation while providing inherent input voltage feed-forward.

The LM5022-Q1 includes a start-up regulator that operates over a wide-input range of 6 V to 60 V. The
pulse width modulation (PWM) controller is designed for high-speed capability, which includes an oscillator
frequency range up to 2.2 MHz and total propagation delays less than 100 ns. Additional features include
an error amplifier, precision reference, line undervoltage lockout, cycle-by-cycle current limit, slope
compensation, soft-start, external synchronization capability, and thermal shutdown. The LM5022-Q1 is
available in the 10-pin VSSOP package.

Figure 2 shows a block diagram of the device.

Figure 2. LM5022-Q1 Block Diagram

http://www.ti.com
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Additional features:
• AEC-Q100 grade 1 qualified for automotive applications
• Wide operating input voltage: 6 V to 60 V (down to 3 V after startup)
• 1-A peak MOSFET gate drive current
• Duty cycle limit of 90%
• Single resistor oscillator frequency set
• Adjustable switching frequency up to 2.2 MHz
• External clock synchronization
• Programmable UVLO with hysteresis
• Cycle-by-cycle current limit
• Slope compensation
• Adjustable soft start
• Internal compensation, soft start, current limit, and UVLO
• 10-lead, 3-mm × 3-mm VSSOP Package

2.2.2 TPS57140-Q1
The TPS57140-Q1 device is a 42-V, 1.5-A, step-down regulator with an integrated, high-side MOSFET.
Current-mode control provides simple external compensation and flexible component selection. A low-
ripple, pulse-skip mode reduces the no-load, regulated output supply quiescent current to 116 μA. When
the enable pin is in the low state, the shutdown current is reduced to 1.5 μA.

Undervoltage lockout is internally set at 2.5 V but can be increased using the enable pin. The output
voltage startup ramp is controlled by the slow-start pin that can also be configured for sequencing or
tracking. An open-drain, power-good signal indicates when the output is within 92% to 109% of its nominal
voltage. This output can be used for sequencing a second regulator or driving the reset input pin of a
MCU.

A wide switching-frequency range allows optimization of efficiency and external component size.
Frequency foldback and thermal shutdown protect the part during an overload condition. The TPS57140-
Q1 is available in a 10-pin thermally enhanced MSOP-PowerPAD™ package (DGQ) and a 10-pin VSON
package (DRC). This design uses the 10-pin leadless VSON package.

http://www.ti.com
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Figure 3 shows a block diagram of the device.

Figure 3. TPS57140-Q1 Block Diagram

Additional features:
• AEC-Q100 Grade 1 qualified for automotive applications
• 3.5-V to 42-V input voltage range
• 200-mΩ high-side MOSFET
• High efficiency at light loads with pulse-skipping Eco-mode™ control scheme
• 116-μA operating quiescent current
• 1.5-μA shutdown current
• 100-kHz to 2.5-MHz switching frequency
• Synchronizes to external clock
• Adjustable slow start and sequencing
• Undervoltage and overvoltage power-good output
• Adjustable undervoltage lockout voltage and hysteresis
• 0.8-V internal voltage reference
• Available in a 10-pin MSOP-PowerPAD package (DGQ) and a 10-pin VSON package (DRC)

2.2.3 TLV71333P-Q1
The TLV713P-Q1 series of LDO linear regulators are low-quiescent current LDOs with excellent line and
load transient performance and are designed for power-sensitive applications. These devices provide a
typical accuracy of 1%. Additionally, the TLV713P-Q1 family of devices are designed to be stable without
an output capacitor enabling a very small solution size but remain stable with any output capacitor if one is
used.

The TLV713P-Q1 also provides inrush current control during device power-up and enabling. The
TLV713P-Q1 limits the input current to the defined current limit to avoid large currents from flowing from
the input power source. This functionality is especially important in battery-operated devices.

http://www.ti.com
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The TLV713P-Q1 series is available in a standard SOT23 5-pin DBV package and provides an active
pulldown circuit to quickly discharge output loads. The TLV713P-Q1 is suited for automotive applications
with AEC-Q100 grade 1 qualification.

Figure 4 shows a block diagram of the device.

Figure 4. TLV713P-Q1 Block Diagram

Additional features:
• AEC-Q100 Grade 1 qualified for automotive applications
• Input voltage range up to 5.5 V
• Stable operation with or without capacitors
• Frequency foldback and overcurrent protection
• Very low dropout: 230 mV at 150 mA
• Accuracy: 1%
• Low IQ: 50 μA
• Available in fixed-output voltages from 1 V to 3.3 V
• High PSRR: 65 dB at 1 kHz
• Active output discharge
• Available in a 5-pin SOT-23 package (DBV)

2.2.4 TCAN1042V-Q1
This TCAN1042 family is a CAN transceiver family that meets the ISO11898-2 (2016) high-speed CAN
physical layer standard. All devices are designed for use in CAN FD networks up to 2 Mbps . Devices with
part numbers that include the G suffix are designed for data rates up to 5 Mbps, and versions with the V
suffix have a secondary power supply input for IO level shifting the input pin thresholds and RXD output
level. This family has a low power standby mode with remote wake request feature. Additionally, all
devices include protection features to enhance device and network robustness including a TXD dominant
state timeout, thermal shutdown, undervoltage lockout, short circuit current limiting, and internal pull ups
for critical floating input terminals.

http://www.ti.com
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Figure 5 shows a block diagram of the device.

Figure 5. TCAN1042-Q1 Family Block Diagram

Additional features:
• AEC-Q100 qualified for automotive applications
• Meets the ISO 11898-2:2016 and ISO 11898-5:2007 physical layer standards
• All devices support classic CAN and 2 Mbps CAN FD and G versions support 5 Mbps
• Short and symmetrical propagation delay times and fast-loop times for enhanced timing margin
• IO voltage range supports 3.3-V and 5-V MCUs
• Ideal passive behavior when unpowered
• IEC ESD protection up to ±15 kV
• Bus fault protection: ±58 V (non-H variants) and ±70 V (H variants)
• Undervoltage protection on VCC and VIO (V variants only) supply terminals
• Driver dominant time out (TXD DTO) supporting data rates down to 10 kbps
• Thermal shutdown protection (TSD)
• Receiver common mode input voltage: ±30 V
• Typical loop delay: 110 ns
• Junction temperatures from –55°C to 150°C
• Available in SOIC(8) package and leadless VSON(8) package (3.0 mm × 3.0 mm) with automated

optical inspection (AOI) capability
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2.2.5 TMS320F28030PAGQ
The F2803x Piccolo family of MCUs provide the power of the C28x core and control law accelerator (CLA)
coupled with highly-integrated control peripherals in low pin-count devices. This family is code-compatible
with previous C28x-based code and also provides a high level of analog integration. An internal voltage
regulator allows for single-rail operation. Enhancements have been made to the HRPWM to allow for dual-
edge control (frequency modulation). Analog comparators with internal 10-bit references have been added
and can be routed directly to control the PWM outputs. The ADC converts from 0 to 3.3-V fixed, full-scale
range and supports ratio-metric VREFHI and VREFLO references.

Figure 6 shows a block diagram of the device.

Figure 6. TMS320F28030PAGQ Block Diagram

• 60 MHz, 32-bit, floating-point, high-efficiency, CPU (TMS320C28x)
• 128-bit security key and lock
• Single, 3.3-V supply with no power sequencing requirement
• Integrated power-on reset and brown-out reset
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• Clocking: two internal zero-pin oscillators, on-chip crystal oscillator, and external clock input
• Up to 45 individually programmable, multiplexed GPIO pins with input filtering
• Peripheral interrupt expansion (PIE) block that supports all peripheral interrupts
• Three 32-bit CPU timers and a watchdog timer module
• On-chip Flash, SARAM, OTP, and boot ROM available
• Serial port peripherals:

– One serial communications interface (SCI) universal asynchronous receiver/transmitter (UART)
module

– Two serial peripheral interface (SPI) modules
– One inter-integrated-circuit (I2C) module
– One local interconnect network (LIN) module
– One enhanced controller area network (eCAN) module

• Enhanced control peripherals
– ePWM
– High-resolution PWM (HRPWM)
– Enhanced capture (eCAP) module
– High-resolution input capture (HRCAP) module
– Enhanced quadrature encoder pulse (eQEP) module
– Analog-to-digital converter (ADC)
– On-chip temperature sensor
– On-chip comparator

• Available in 56-pin VQFN, 64-pin TQFP. and 80-pin LQFP packages

2.2.6 SN74LVC2G06-Q1
The SN74LVC2G06-Q1 is a dual-inverter buffer and driver IC that is designed for 1.65-V to 5.5-V VCC
operation. The SN74LVC2G06-Q1 device has two open-drain outputs that can be connected to other
open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum
sink current is 32 mA per output. This device is fully specified for partial-power-down applications using Ioff
circuitry. The Ioff circuitry disables the outputs preventing damaging backflow current through the device
when the device is powered down but voltage remains on the output (or outputs).

Figure 7 shows a block diagram of the device.

Figure 7. SN74LVC2G06-Q1 Block Diagram

Additional features:
• AEC-Q100 qualified for automotive applications
• Supports 1.65-V to 5.5-V VCC operation
• Max tpd of 3.4 ns at 3.3 V
• Low power consumption, 10-µA maximum
• ±24 mA output drive at 3.3 V
• Inputs and open-drain outputs accept voltages up to 5.5 V
• ESD Protection exceeds 2-kV human-body model, 200-V machine model, and 1-kV charged-device

model
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2.2.7 SN74AHCT1G04-Q1
The SN74AHCT1G04-Q1 is an automotive qualified single inverter gate with TTL input threshold that
comes in a 5-pin SC70 package.

Figure 8 shows a block diagram of the device.

Figure 8. SN74AHCT1G04-Q1 Block Diagram

Additional features:
• AEC-Q100 qualified for automotive applications
• Operating range of 4.5 V to 5.5 V
• Maximum tpd of 7.5 ns at 5 V
• Low power consumption—10 µA maximum ICC

• ±8-mA output current drive at 5 V
• TTL input thresholds
• Available in a SOT SC-70 package (DCK)

2.2.8 CSD17313Q2
The CSD17313Q2 is a 30-V, 24-mΩ, 2-mm × 2-mm SON package NexFET power MOSFET device
designed to minimize losses in power conversion applications. The 2-mm × 2-mm SON offers excellent
thermal performance for the size of the package.

Figure 9 shows a block diagram of the device.

Figure 9. CSD17313Q2 Block Diagram

Additional features:
• 30 V VDS drain-to-source voltage
• Ultra-low Qg and Qgd
• Low-thermal resistance
• Pb-free, halogen-free, and RoHS compliant
• 1.3-V input threshold voltage
• 31-mΩ drain-to-source on resistance at VGS of 3 V
• SON 2-mm × 2-mm plastic package
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2.3 System Design Theory
BCMs, gateway modules, side mirror replacement modules, and head unit modules are all composed of
several sub-circuits. This design covers the battery input, voltage regulation, and CAN portions of these
applications. The following subsections cover the component selection and device configuration decisions
for this design.

2.3.1 Supply Protection and Filtering
Figure 10 shows the portion of the schematic that has the reverse battery input protection diode, input
capacitors, and pi filter components.

Figure 10. Supply Protection and Filtering Circuitry

Diode D5 is a 40-V Schottky diode for protection against reverse battery conditions. Due to the wide-input
voltage tolerant inputs of the LM5022-Q1 and the TPS57140-Q1 in conjunction with the reverse blocking
Schottky diode the design can handle from –40 V to 40 V on the VBATT input supply.

Capacitors C16 and C17 are used for input transient filtering, and the pi filter (composed of C18, L4, and
C15) can be used to implement a two-pole, low-pass filter for conducted emissions. Input capacitors C16
and C17, pi filter components C18, and C15 were left unpopulated, and a 0-Ω shunt was placed across
the inductor for the evaluation of this design.

Lastly, the VBATT net is directly tied to pin 9 of the external D-subminiature (D-sub) connector J6 as
shown in Section 2.3.6.

Figure 11 shows a snippet of the battery filtering and reverse voltage protection portion of the PCB.

Figure 11. Battery Filtering and Protection PCB Snippet
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2.3.2 Wide-Input Voltage Boost Controller
Figure 12 shows the portion of the TIDA-01429 schematic with the LM5022-Q1 and all of its supporting
circuitry.

Figure 12. LM5022-Q1 Non-Synchronous Boost Controller Circuitry

• UVLO pin: The UVLO pin of the LM5022-Q1 is able to handle voltages up 7 V and has a typical
shutdown threshold of 1.25 V. Due to the desired wide-input voltage operation of this design (3 V up to
40 V), a voltage divider with an additional Zener diode clamp was implemented. R28 and R32 create a
0.42:1 input voltage ratio, which means the UVLO pin will detect nominally 42% of the VBATT_Filt
voltage. Additionally, when the VBATT_Filt voltage rises above 13 V, the Zener diode (D7) begins to
clamp this voltage to protect the pin.

• VIN pin: The VIN pin supplies the internal logic of the device and is the source for the internal VCC
regulator, which supplies the integrated gate driver of the device. This pin has nominal UVLO threshold
of 5 V. This threshold means that if the VBATT_Filt voltage was fed directly to the VIN pin of the
regulator, the device would undervoltage and shut off when VBATT_Filt dropped below 5 V. To enable
the device to operate all the way down to 3 V on VBATT_Filt the VIN pin was supplied using the
VBATT_Boosted output voltage (nominally 8.1 V). The caveat to this approach is that the device will
startup at a diode drop higher voltage (due to D6) later than if the VIN pin was directly supplied by
VBATT_Filt. The benefit to this solution that no extra components are needed and the regulator can
continue to operate down to input voltages to 3 V instead of just 5 V.

• RT/SYNC pin: External resistor R39 sets the switching frequency of the LM5022-Q1. Using a 6.98-kΩ
resistor set the nominal switching frequency to 2.07 MHz, which is above the AM band frequency
range. Additionally, C30 can be used to capacitively couple an external clock to this pin for external
clock synchronization. This pin can be used if a user desires synchronizing multiple switching supplies
to the same frequency, therefore, avoiding beat frequencies due to slightly mismatched regulator
switching frequencies. See Section 2.3.11 for more information on the clock synchronization signal.
The design was evaluated with just the 6.98-kΩ resistor to GND setting the switching frequency of the
LM5022-Q1.

• FB pin: Resistors R33 and R41 were used to set the output voltage of the LM5022-Q1. The internal
error amplifier has a typical threshold voltage of 1.25 V. These resistors result in a nominal output
voltage of 8.07 V.

• SS pin: An external capacitor on the SS pin can be used to set the period of time where the power
converter gradually turns on. This pin can be used to reduce turn on power surges on the input rail.
The pin has a nominal 10-µA current source with a 550-mV input threshold. A capacitor value of 10 nF
was used to create a 550-µs soft-start time.

• CS pin: Sense resistor R43, low-pass filter R45 and C38, and series sense resistor R46 are used to
set the overcurrent threshold and filtering. A sense resistor value of 150 mΩ was used to set a steady
state inductor current limit of 3.3 A.

• Output diode: A low-forward voltage drop Schottky diode was used to limit the power losses in the
output diode of the boost regulator. D6 is a 50-V, 2-A diode in a DO-220AA package.

• Input capacitors, output capacitors, compensation network, FET selection, and inductor selection were
made using the Detailed Design Procedure section of the LM5022-Q1 2.2MHz, 60 V Low-Side
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Controller For Boost and SEPIC[1] datasheet. See Section 5 for a link to the datasheet.

The LM5022-Q1 is a non-synchronous boost controller with external FET and diode. This enables a
scalable design at the tradeoff of a larger solution size. The total PCB solution size on the TIDA-01429 for
the LM5022-Q1 and all of its supporting circuitry is 17.78 mm × 20.32 mm (700 mils × 800 mils).

Figure 13 shows a snippet of the boost controller portion of the PCB.

Figure 13. LM5022-Q1 Boost Controller Circuitry on PCB

Lastly, the LM5022-Q1 is able to handle input voltages as low as 3 V after startup. Due to the series
Schottky diode drop on the input battery connection of up to 0.5 V for reverse battery protection, the
module is able to handle input voltages as low as 3.5 V after startup and remain in regulation.

2.3.3 Wide Input Voltage Buck Converter
Figure 14 shows the portion of the TIDA-01429 schematic with the TPS57140-Q1 and all of it's supporting
circuitry.

Figure 14. TPS57140-Q1 Non-Synchronous Buck Converter Circuitry

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUD47A


www.ti.com System Overview

15TIDUD47A–July 2017–Revised August 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Automotive Discrete SBC Pre-Boost, Post-Buck With CAN Reference Design

• EN pin: For low-impedance input voltages the EN pin is only rated for a maximum input voltage of 5 V,
but if the input voltage will not source more than 100 µA, the 5-V maximum rating can be exceeded.
Therefore, a high-impedance, resistive voltage divider is placed on the EN pin. R30 ensures that the
input current on the EN pin stays below 100 µA for voltages up to 40 V. If a higher load dump voltage
is desired, this resistor value can be increased allowing load dump input voltage up to 47 V because
the LM5022-Q1 can handle up to 60 V.

• PWRGD pin: The PWRGD pin is used to enable the subsequent 3.3-V LDO that is supplied by the
output voltage of the TPS57140-Q1. This pin is an open-drain output that is placed in a high-
impedance state when the output voltage is between 94% and 107% of the set output voltage. Resistor
R29 is used to pull the output high when the pin is in a high-impedance state.

• SS/TR pin: A capacitor placed between this pin and ground sets the slow start time of the regulator.
Once the output capacitance, output voltage, and desired in-rush current is known, a soft-start time
can be calculated. For this design a soft-start time of 3 ms was chosen, which results in a 9.38-nF
capacitor. This value was rounded up to the standard value of 10 nF.

• VSENSE pin: The pin has a nominal voltage reference value of 0.8 V. External resistors R34 and R44
are used to create a voltage divider with the top node of the divider (output voltage) set to 5 V.

• Output capacitance, inductor, catch diode, and compensation network component selections were
made using the formulas found in the Detailed Design Procedure section of the TPS57140-Q1 1.5-A
42-V Step-Down DC-DC Converter With Eco-mode™ Control[2] datasheet.

The TPS57140-Q1 is a non-synchronous buck converter with integrated, high-side FET, which enables a
smaller PCB solution size. The total PCB solution size on the TIDA-01429 for the TPS57140-Q1 and all of
its supporting circuitry is 15.75 mm × 17.0 mm (620 mils × 670 mils). Figure 15 shows a snippet of the
buck converter portion of the PCB.

Figure 15. TPS57140-Q1 Buck Converter Circuitry on PCB
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2.3.4 Low-Input, Voltage Fixed 3.3-V LDO
Figure 16 shows the portion of the schematic with the TL71333P-Q1 and its input and output capacitors.

Figure 16. TLV71333P-Q1 3.3-V LDO Circuitry

Although the TLV713P-Q1 family of LDOs can be used without input and output capacitors, for best
transient results a 1-µF capacitor was placed in the input node (C13) and a 0.1-µF capacitor was placed
on the output node (C14) per datasheet recommendations.

The TLV71333-Q is a linear drop-out regulator with integrated pass FET enabling a very small solution
size. The total PCB solution size on the TIDA-01429 for the TLV71333P-Q1 with the input and output
capacitors is 7.75 mm × 3.18 mm (305 mils × 125 mils). Figure 17 shows a snippet of the boost controller
portion of the PCB.

Figure 17. TLV71333P-Q1 LDO Circuitry on PCB
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2.3.5 CAN Physical Layer
Figure 18 shows the potion of the schematic with the CAN physical layer, which includes the CAN
transceiver, filtering common mode choke (CMC), filtering capacitors, Electro-Static Discharge (ESD)
protection IC, and termination components.

Figure 18. TCAN1042V-Q1 CAN Physical Layer Circuitry

• Transceiver U8: The TCAN1042 family comes in both an 8-pin, SOIC package and a small 3-mm × 3-
mm, leadless, DFN package. For this design, the small DFN package was used.

• CMC L7: A standard CMC footprint was added to the CANH and CANL bus lines, so the design could
easily be evaluated with a variety of CMCs. However, the design was evaluated without the CMC, and
instead, two series 0-Ω resistors were populated in place of the choke.

• ESD IC U9: A common footprint dual-channel, bidirectional ESD protection IC was placed for optional,
additional protection of the CANH and CANL bus lines. However, the design was evaluated with U9
unpopulated.

• Termination components R50, R51, and C41: These components are used for terminating the CAN
bus with a split termination. This technique uses two resistors that are equal to one half the
characteristic impedance of the cable (typically 120 Ω) with a capacitor placed to ground between the
two resistors. This creates two low-pass filters on the CANH bus lines and the CANL bus line for
filtering common mode noise. If standard termination is desired, capacitor C41 can be left open.

• Filtering capacitors C40 and C44: These capacitors are place from CANH to GND and CANL to GND
to help filter high-frequency transients and noise from getting into or out of the module.

shows a snippet of the CAN physical layer portion of the PCB.

Figure 19. CAN Physical Layer Circuitry on PCB

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUD47A


CAN_N
CAN_P

GND

VBATT

GND

1

2

3

4

5

6

7

8

9

1
1

1
0

J2

GND

0

R47

0
R53

Copyright © 2017, Texas Instruments Incorporated

System Overview www.ti.com

18 TIDUD47A–July 2017–Revised August 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Automotive Discrete SBC Pre-Boost, Post-Buck With CAN Reference Design

2.3.6 External Power and Networking Connections
Figure 20 shows the external connector which includes the VBATT input, GND connection and the CANH
and CANL connections. The pinout used for the D-sub 9 connector is the recommended pinout by CAN in
automation (CiA) document DIN 41652. Figure 20 shows the pinout for both the female D-sub 9
connectors that were populated on the boards and the male connectors that were used for creating the
wire harness.

Figure 20. External Connector Pinout

Figure 21 shows the external connector on the TIDA-01429 PCB.

Figure 21. External Connector for Power and CAN on PCB
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2.3.7 Electronically-Controlled Dummy Load
Figure 22 shows the dummy load resistor and external circuitry that was used to help further evaluate the
5-V buck regulator. A 3-W, 10-Ω resistor was used for the dummy load, which results in an additional load
current when active on the buck regulator's output of 500 mA. This was used to evaluate the load step
transient response of the TPS57140-Q1 buck converter.

Figure 22. Dummy Load Circuitry

• J3: The two-pin, 100-mil header can be used for manually enabling and disabling the dummy load by
placing a shunt across the pins.

• Q1: Additionally, the dummy load can be electronically controlled via GPIO24 (pin 64) of the
TMS320F28030Q device. GPIO24 is tied to the gate connection of Q1 to enable and disable the load.
Q1 is a 30-V, N-Channel, NexFET™ power MOSFET.

• R52: Resistor R52 is placed between the gate and source of Q1 ensures that the gate voltage is pulled
low when the GPIO24 of the C2000 is in the high-impedance state.

GPIO24 and Q1 were used to evaluate the load-step response oscilloscope shots were taken in
Section 3.2.

Figure 23 shows the dummy load resistor portion of the PCB.

Figure 23. Dummy Load Resistor Circuitry on PCB
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2.3.8 Status LEDs
Four status LEDs have been added to the design for ease of evaluation and monitoring during electro-
magnetic compliance (EMC) testing. Figure 24 shows the status LED portion of the schematic.

Figure 24. Status LED Circuitry

To ensure there would be proper drive current for the status LEDs two SN74LVC2G06-Q1 automotive
dual-inverter and driver ICs were used for driving the four status LEDs. Additionally, the 3.3-V supply to
each LED has been equipped with a single-pole switch that can be opened for disabling the LED, which is
useful when taking current consumption measurements on the TIDA-01429 design.

All series resistors for the LEDs have been sized for a nominal 10 mA of LED current. Table 2 shows what
status each LED was programmed to indicate.

Table 2. Status LED Descriptions

LED COLOR DESCRIPTION BEHAVIOR

Blue Any error status flag set in the CAN
controller Blinks at 1 Hz when any CAN error status flag is set

Green Bus Off error condition in the CAN
controller Blinks at 1 Hz when the Bus Off flag is set

Red MCU status LED heartbeat Blinks at 1 Hz to indicate module is functioning properly

Yellow Master status LED heartbeat Blinks at 1 Hz to indicate module is configures as the master module and
initiates communication
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Figure 25 shows the status LED portion of the PCB. The closed position for each switch is to the right
indicated by On, and the open position for each switch is to the left.

Figure 25. Status LED Circuitry on PCB

2.3.9 Piccolo™ Input Power Filtering
Figure 26 shows the power connections circuitry for the TMS320F28030PAGQ device.

Figure 26. Input Power Filtering for the Piccolo™ MCU

• Supply decoupling capacitors: It is recommended to place a dedicated 2.2-µF capacitor on each
VDDIO, VDDA, and VDD input as close to the device as possible.

• Ferrite beads: Additionally, it is recommended to place a series ferrite on both VDDIO supply input pins
and the VDDA supply input pin for additional filtering.
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2.3.10 Piccolo™ Mode Selection and Programming Interface
Figure 27 shows the optional external crystal, the mode selection input circuitry, reset control, and the
JTAG programming interface portion of the schematic.

Figure 27. Mode Selection and Programming Interface Circuitry

• Optional external crystal: The TMS320F28030 has an internal crystal and the option to run off an
external crystal. An optional 20-MHz crystal was populated, but the internal crystal was used for
evaluation.

• Mode selection circuitry: Five of the general purpose input outputs (GPIOs) were used for mode
selection and boot mode control:
– GPIO11: If this pin is pulled high on startup, the module will be configured as the master node; if

the pin is pulled low on startup, the module will be configured as the slave node.
– GPIO5: The state of this pin on startup dictates what the data field of the CAN messages will be. If

the pin is low, the data field will be 0x55555555, and if the pin is low, the data field will be
0x00000000.

– GPIO10 and GPIO4: The state of these two pins on startup dictates what data rate the CAN
interface is configured to:
• Low, low: 125 KBPS
• Low, high: 250 KBPS
• High, low: 500 KBPS
• High, high: 1000 KBPS

– GPIO37 and GPIO34: The state of these two pins on startup tells the bootloader software what
boot mode to use on power up:
• Low, low: Parallel IO mode
• Low, high: SCI mode
• High, low: Wait mode
• High, high: GetMode
The default behavior of GetMode is to boot to flash, and therefore, once the modules were
programmed (into flash) after assembly, this is the mode that the modules were configured to for
evaluation. For more information on boot modes please see TMS320F2803x Piccolo
Microcontrollers[5].

• XRS reset input pin: Two connections were made to XRS input pin. The first is a manual push button
for restarting the MCU, and the second is the open-drain, RESET output of the LM53601-Q1 device as
shown in Figure 12. The LM53601-Q1 holds this output low until the 3.3-V supply is in regulation. This
ensures that the MCU only begins the boot process once a stable supply has been generated.

• JTAG programming interface: The device was programmed using a 7 × 2, 100-mil, JTAG header using
the XDS100V2 JTAG emulator. For more information on JTAG programming please see
TMS320F2803x Piccolo Microcontrollers[5].
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Figure 28 shows the optional external crystal, the mode selection circuitry, manual reset button, power
supply filtering components, and JTAG programming header J1.

Figure 28. C2000™ Peripheral Circuitry on the PCB

2.3.11 External Clock Level Shifting
Because the Piccolo C2000 MCU's IO pins are 3.3 V and the LM5022-Q1 RT/SYNC input threshold can
be as high as 3.8 V, an single-inverter gate was placed in the design for the option to drive the LM5022-
Q1 and TPS57140-Q1 with an external clock signal. Figure 29 shows the level shifting portion of the
schematic.

Figure 29. Clock Level Shifting Circuitry
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This SN74AHCT1G04-Q1 was selected because the device has a small SC70 footprint, low-propagation
delay, a TTL input threshold, and is automotive qualified. The TTL input threshold allows the device to be
supplied by 5 V and have the input signal driven by a 3.3-V MCU IO pin.

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Harware and Software
This section provides an overview of the TIDA-01429 board, the external connections on the board, the
mode selection switches, and how the design was evaluated.

3.1.1 Hardware
The TIDA-01429 reference design was created to evaluate a 3-stage power tree with a CAN interface.
The first stage of the power tree is a wide-input voltage boost controller to an intermediate voltage of 8.1 V
when boosting, and the second stage is a wide-input voltage buck converter to 5 V. The third stage is a
low-input voltage LDO used to create a 3.3-V supply rail for the C2000 MCU. To evaluate the CAN
interface, a pair of modules connected to each other using a 4-wire harness is required.

To set-up and evaluate this design the following three items were used:
1. Two TIDA-0429 PCBs
2. A wire harness with four conductors: One unshielded twisted pair (UTP) cable for CANH and CANL,

and another UTP cable for VBATT and GND power connections
3. An XDS100V2 JTAG emulator for programming the TMS320F28030PAGQ Piccolo MCU

All of these items are shown in Figure 30.

Figure 30. Getting Started Hardware

3.1.1.1 TIDA-01429 PCB Boards
The PCBs are 101.6 mm × 76.2 mm (4" × 3") and have 1-oz copper foil on both sides. There are two
external connectors used to interface with the board:
1. Header J1: This is a 14-pin (7 × 2) ,100-mil header used for programming the TMS320F28030PAGQ

device using a JTAG interface using the XDS100v2 JTAG emulator
2. Connector J2: This is a female, 9-pin, D-subminiature (D-sub) connector (DE-9) that has four

connections for power, ground, CANH, and CANL
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3.1.1.2 Mode Selection
As discussed in Section 2.3.10, four GPIO pins are used to configure the module on power up. The state
of GPIO5 on power up dictates the data field of the CAN messages, the state of GPIO11 dictates whether
the node will be configured in master or slave mode, and GPIO11 and GPIO4 dictate which of the four
data rates the CAN messages will be transmitted and received at. Note that both modules must be
configured to the same data rate to properly communicate. Table 3 shows the 16 possible configurations
that are dictated by the states of GPIO4, GPIO 5, GPIO10, and GPIO11 on power up.

Table 3. Mode Selection

GPIO5 GPIO11 GPI10 GPIO4 DATA FIELD MASTER OR
SLAVE

DATA RATE
(KBPS)

Low Low Low Low 0 x 5555 5555 Slave 125
Low Low Low High 0 x 5555 5555 Slave 250
Low Low High Low 0 x 5555 5555 Slave 500
Low Low High High 0 x 5555 5555 Slave 1000
Low High Low Low 0 x 5555 5555 Master 125
Low High Low High 0 x 5555 5555 Master 250
Low High High Low 0 x 5555 5555 Master 500
Low High High High 0 x 5555 5555 Master 1000
High Low Low Low 0 x 0000 0000 Slave 125
High Low Low High 0 x 0000 0000 Slave 250
High Low High Low 0 x 0000 0000 Slave 500
High Low High High 0 x 0000 0000 Slave 1000
High High Low Low 0 x 0000 0000 Master 125
High High Low High 0 x 0000 0000 Master 250
High High High Low 0 x 0000 0000 Master 500
High High High High 0 x 0000 0000 Master 1000

All of the states for GPIO4, GPIO5, GPIO10, and GPIO11 are controlled by switch S2. If the switch is in
the closed position, the input will be pulled high, and if the switch is in the open position, the input will be
pulled low. The status of the GPIO pins are only checked one time after power up during initialization. To
change the mode of a module, the switch state must be changed and the module must be power cycled.

3.1.1.3 Wire Harness
The wire harness for electrically connecting the two boards together was created using two 1.7-m long,
24-gauge UTP cables with two male 9-pin, D-sub connectors. The pinout used is the recommended pinout
by CiA document DIN 41652. Table 4 shows the pinout for the four connections that were used on each
D-sub connector.

Table 4. Wire Harness Connections

D-SUB CONNECTOR PIN CONNECTION DESCRIPTION
Pin 2 CANL: Low-level CAN bus IO line
Pin 3 Ground power connection
Pin 7 CANH: High-level CAN bus IO line
Pin 9 Battery input power connection
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Additionally, two banana plug pigtail power connections were added to one side of the harness for
connecting to a lead-acid battery or alternate power supply.

Figure 31 shows an image of assembled wire harness that was used for evaluation.

Figure 31. Assembled Wire Harness

3.1.1.4 Power Supply Connection
The modules are powered through the banana plug pigtails that were added to the wire harness as shown
in Figure 31. The VBATT net is red and GND net is black. These two connections are shared between
both ends of the wire harness, therefore, the supply connection is only required to be made on the one
end of the harness to power both modules. The recommended supply voltage range is from 3.5 V to 40 V.

3.1.1.5 XDS100V2 JTAG Emulator
The XDS100V2 JTAG emulator is an emulator made by Spectrum Digital Incorporated that can be used to
program a variety of MCUs using JTAG. This emulator plugs into a computer using a USB and connects
to the target using a standard, 14-pin, JTAG interface. Figure 32 shows an image of the XDS100V2.

Figure 32. XDS100V2 JTAG Emulator
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Once the modules are programmed in flash and the boot mode switches for GPIO34 and GPIO37 are
both set to high, the modules can be power cycled and evaluated without reprogramming them.

3.1.2 Software
The software was written using Code Composer Studio™ v7.1.0 in C. Figure 33 shows a program
flowchart describing what was programmed into each module. As long as one module is configured as a
master, and one module is configured as a slave, which is described in Section 2.3.10, and they are both
configured to the same data rate. The two modules will automatically begin communicating and error
checking once powered up and connected to each other.

Figure 33. Program Flow Diagram
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When the modules are powered up, first the bootloader checks the state GPIO34 and GPIO37. Once the
modules have been initially programmed, the switches are set so both GPIO34 and GPIO37 are pulled
high, which tells the bootloader to boot from flash.

In flash the module program first initializes the timers, interrupts, and GPIO pins. After initialization GPIO
inputs GPIO4, GPIO5, GPIO10, and GPIO11 are read to determine how to configure the CAN module and
whether the module will follow the slave program flow (left path) or the master program flow (right path) as
shown in Figure 33.

If the module is configured as the master node, the device will initiate traffic and indefinitely reattempt
communication if a message is not received back. There is a 1-s timer that is started after each
transmission of a CAN message. If this timer expires before a message is received, an error count is set,
and the error status LED will blink four times at 1 Hz. If a message is received, the contents of the data
field will be checked against a preprogrammed value. If the two do not match, or if any of the error flags
are set in the error and status register, an error count is set, and the CAN error status LED will blink four
times at 1 Hz. Additionally, if the I status flag is set, the bus off status LED will blink four times at 1 Hz.
This send, receive, and error check process continues indefinitely.

If the module is configured as the slave node, the device will wait to receive a message before
transmitting one. If the module does not receive a message within 1 s, an error count is set and the error
status LED will blink four times at 1 Hz. Once a message is received, the contents of the data field will be
checked against a preprogrammed value. If the two do not match, or if any of the error flags are set in the
error and status register, an error count is set, and the CAN error status LED will blink four times at 1 Hz.
Additionally, if the Bus Off status flag is set in the error and status register, the bus off status LED will blink
four times at 1 Hz. After receiving and error checking the message, the module will transmit a CAN frame,
and the process will start over. After transmitting, the 1-s timer will reset and begin counting down. If it
expires before a message is received, the error status LED will blink four times at 1 Hz. This receive, error
check, and transmit process continues indefinitely.

3.2 Testing and Results
The following items were evaluated on the TIDA-01429 design:
• Reverse blocking protection
• Boost controller input current versus input voltage
• Boost controller output voltage versus input voltage
• Boost controller UVLO pin's Zener diode clamping behavior
• Boost controller efficiency
• Buck converter input current versus input voltage
• Buck converter output voltage versus input voltage
• Buck converter efficiency
• Buck converter load step response
• LDO input current versus input voltage
• LDO output voltage versus input voltage
• CISPR 25 Radiated Emissions (RE) Testing
• CISPR 25 Conducted Emissions (CE) Testing - Voltage Method
• ISO 11452-4 Bulk Current Injection (BCI) Immunity Testing

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUD47A


Input Voltage (V)

In
pu

t C
ur

re
nt

 (
m

A
)

0 10 20 30 40
0

20

40

60

80

100

120

140

160

180

D003

Input Voltage (V)

In
pu

t C
ur

re
nt

 (
P

A
)

-40 -30 -20 -10 0
-12

-10

-8

-6

-4

-2

0

D016

www.ti.com Hardware, Software, Testing Requirements, and Test Results

29TIDUD47A–July 2017–Revised August 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Automotive Discrete SBC Pre-Boost, Post-Buck With CAN Reference Design

3.2.1 Reverse Blocking Protection
For lower-current applications, a standard Schottky diode is the most cost-effective solution for reverse
battery protection. A standard 40-V, 2-A Schottky diode in a SOD123 package was used. Figure 34 shows
the input leakage current versus the reverse polarity input voltage.

Figure 34. Reverse Blocking Performance

As shown in Figure 34, the input leakage current with a –40-V input voltage applied was 11.1 µA at room
temperature.

3.2.2 Boost Controller Input Current Versus Input Voltage
The input current versus input voltage data was taken with one module initialized and sending CAN
messages at 500 KBPS. The input voltage measurements are taken from the input side of the regulator at
C20. All of the status LEDs were all left open for these measurements. Figure 35 shows the input current
when the input voltage is ramped from 0 V to 40 V.

Figure 35. Boost Input Current Versus Rising Input Voltage
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Figure 36 shows the input current when the input voltage is dropped from 40 V to 0 V.

Figure 36. Boost Input Current Versus Falling Input Voltage

As shown, the boost controller does not begin turning on with a rising input voltage until approximately 6 V
but remains on to just lower than 3 V with a falling input voltage. Additionally for lower input voltages, the
regulator requires larger input currents to maintain the 8.1-V output.

3.2.3 Boost Controller Output Voltage Versus Input Voltage
The output voltage versus input voltage data was also taken with one module initialized and sending CAN
messages at 500 KBPS. The input voltage measurements are taken from the input side of the regulator at
C20. All of the status LEDs were left open for these measurements. Figure 37 shows the output voltage
for input voltages from 0 V to 40 V. As shown, when the input voltage rises higher than the boost
controller's set output voltage of 8.1 V, the controller transitions to 0% duty cycle, and the output continues
to ramp one diode drop below in the input voltage.

Figure 37. Boost Output Voltage Versus Input Voltage
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To get a better look at the low-voltage behavior of the boost regulator, Figure 38 shows the subset of data
from 0 V to 10 V only. With a rising input voltage, the regulator turned out and began boosting the input
voltage at approximately 5.5 V. Alternately, after initial power up with a falling edge, the regulator
remained on and regulated down to approximately 2.8 V.

Figure 38. Boost Output Voltage Versus Low Input Voltages

3.2.4 Boost Controller UVLO Pin's Zener Diode Clamping Behavior
As stated in Section 2.3.2, the UVLO pin on the LM5022-Q1 required a Zener diode to clamp the input
voltage and protect the input pin from voltages greater than 7 V. Figure 39 shows the clamping behavior
of the voltage divider and the Zener diode on the UVLO pin.

Figure 39. Voltage on UVLO Pin Versus Input Voltage

As shown in Figure 39, the input voltage was clamped to a maximum of 5.6 V for input voltages up to 42
V.
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3.2.5 Boost Controller Efficiency
The efficiency data for the boost controller was taken after completely disconnecting the boost portion of
the design from the rest of the board (cutting traces). Once all of the external loads were disconnected
from the output, and the input voltage could be applied directly to the VIN node of the boost controller,
purely resistive loads were tied from the output of the regulator to ground.

Therefore, the input voltage measurements were taking directly at the input node of the regulator, and the
output voltages were taken from C27 and C28 to GND. The extreme cold crank input voltage of 3 V was
used for all efficiency measurements because during normal vehicle operating conditions, the boost
controller will be at 0% duty cycle.

Figure 40. Boost Controller Efficiency Measurements

As shown the efficiency of the converter is between 60% and 70% from load currents of 100 mA to over
500 mA. For load currents greater than 500 mA, the regulator started current limiting and the output fell
out of regulation. To handle larger loads at lower input voltages shunt resistor R43 can be adjusted to a
lower resistance. Additionally, the switching frequency was monitored while performing the efficiency
measurements. Figure 41 shows the switching frequency of the buck converter with a 40-Ω load.

Figure 41. Boost Controller Switching Frequency
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As shown in Figure 41, the regulators switching frequency with a 125-mA load was 2.2 MHz.

3.2.6 Buck Converter Input Current Versus Input Voltage
To evaluate the buck converter's input current versus input voltage performance, the regulated LM5022-
Q1 was disconnected, and a power supply was fed directly to the input node of the regulator at C23. The
CAN transceiver and C2000 remained in normal mode in transmitting at 500 KBPS, and all the status
LEDs were left open for all input current measurements.

Figure 42. Buck Converter Input Current Versus Input Voltage

Figure 42 shows that the buck converter began to turn on and draw current at 5.1 V and was within
regulation by 6 V.

3.2.7 Buck Converter Output Voltage Versus Input Voltage
To evaluate the buck converter's output voltage versus input voltage performance, the regulated LM5022-
Q1 remained disconnected, and a power supply was fed directly to the input node of the regulator at C23.
The CAN transceiver and C2000 remained in normal mode in transmitting at 500 KBPS, and all the status
LEDs were left open for all output voltage measurements.

Figure 43. Buck Converter Output Voltage Versus Input Voltage

Figure 43 shows that the buck converter's output began to turn on at 5.1 V and was within regulation by 6
V. Additionally, the regulator remained in regulation all the way to 42 V.
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3.2.8 Buck Converter Efficiency
The efficiency data for the buck converter was taken after disconnecting both the CAN transceiver and the
3.3-V LDO from the 5-V output and placing varying purely resistive loads on the output of the regulator. A
constant input voltage of 12.5 V was applied to C23, the input node of the buck converter, for all efficiency
measurements.

Figure 44. Buck Converter Efficiency Measurements

Figure 44 shows that for load currents between 8 mA and 100 mA, the efficiency was between 70% and
80%. Furthermore for output currents of 100 mA to 1.2 A, the efficiency remained between 80% and 90%.

3.2.9 Buck Converter Load Step Response
Lastly the buck converter was evaluated for output regulation accuracy when subjected to a step up in
load current and a step down in load current. For this test, the dummy load resistor RF1 on the board was
populated with a 10-Ω power resistor and transistor Q1 was used for quickly turning on and off this load.
The 10-Ω load on the 5-V rail results in a 500-mA load step. The load step measurements were performed
with the module initialized and sending CAN messages at 500 KBPS.

Figure 45 shows the converter's response to when the load is increased by 500 mA. As shown, the step
increase in load current causes the output voltage of the regulator to droop 352 mV. Figure 46 shows the
converter's response time for the same load step. As shown, the step increase in load was fully recovered
from in less than 50 µs.

Figure 45. Buck Converter Load Step Increase Response Figure 46. Buck Converter Load Step Increase Recovery
Time

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUD47A


Input Voltage (V)

A
xi

s 
In

pu
t C

ur
re

nt
 (

m
A

)

0 2 4 6
0

10

20

30

40

50

60

70

80

90

100

D013

www.ti.com Hardware, Software, Testing Requirements, and Test Results

35TIDUD47A–July 2017–Revised August 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Automotive Discrete SBC Pre-Boost, Post-Buck With CAN Reference Design

Figure 47 shows the converter's response to when the load is decreased by 500 mA. As shown, the step
decrease in load current causes the output voltage of the regulator to increase by 344 mV. Figure 48
shows the converter's response time for the same load step. As shown, the step decrease in load was
fully recovered in 60 µs.

Figure 47. Buck Converter Load Step Decrease
Response

Figure 48. Buck Converter Load Step Decrease
Recovery Time

3.2.10 LDO Input Current Versus Input Voltage
To evaluate the LDO's input current versus input voltage performance, the regulated 5-V rail was
disconnected from the input and a power supply was fed directly to the input node of the regulator at C13.
The CAN transceiver and C2000 remained in normal mode in transmitting at 500 KBPS, and all the status
LEDs were left open for all input current measurements. The EN was tied to the input voltage of the
device.

Figure 49. LDO Input Current Versus Input Voltage

Figure 49 shows that the LDO began to draw current at and turn on at 1.35 V and was in regulation at
3.57 V. In the actual application where the device would be held in low-power sleep mode by the
TPS57140-Q1 until the 5-V rail was within regulation the device would remain disabled and draw less than
1 µA of current until being enabled. Additionally, the device was tested for input quiescent current from 0 V
to 6 V with the enable pin tied low, and the maximum input current was 0.6 µA.
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3.2.11 LDO Output Voltage Versus Input Voltage
To evaluate the LDO's output voltage versus input voltage performance, the regulated 5-V rail remained
disconnected from the input and a power supply was fed directly to the input node of the regulator at C13.
The CAN transceiver and C2000 remained in normal mode in transmitting at 500 KBPS, and all the status
LEDs were left open for all input current measurements. The EN was tied to the input voltage of the
device for this test.

Figure 50. LDO Output Voltage Versus Input Voltage

Figure 50 shows that the LDO's output began to turn on at 1.35 V and was in regulation at 3.57 V. In the
actual application where the device would be held in low-power sleep mode by the TPS57140-Q1 until the
5-V rail was within regulation the device's output would remain disabled, and the output voltage would not
slowly ramp with input voltage. Additionally, the device was tested for output voltage when in low-power
sleep mode when the input voltage was swept from 0 V to 6 V with the enable pin tied low. The output
remained disabled and under 3 mV for the entire input range.

3.2.12 CISPR 25 Radiated Emissions Testing
Radiated emissions testing was performed for a pair of modules in an anechoic chamber per the ALSE
test method in CISPR 25 Edition 4.0. In this test there are two modules placed 1.7-m apart from each
other. The slave node, or equipment under test (EUT) as it is referred to in the standard, is placed on top
of a low-relative permittivity support (raised off the ground plane by a material that resists electric fields).
The master node, which is sometimes referred to as the monitoring node, is tied directly to the ground
plane. This slave node setup is shown in Figure 51, and the master node setup is shown Figure 52.

Figure 51. Slave Node Setup for Radiated Emissions Figure 52. Master Node Setup for Radiated Emission
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The test consists of multiple frequency ranges for three different antennas with two of the antennas
oriented in both the horizontal and vertical positions. The setup description for the five measurement runs
are described below:
• Test run 1: 150 KHz to 30 MHz with a dipole antenna in vertical orientation
• Test run 2: 30 MHz to 200 MHz with a biconical antenna in horizontal orientation
• Test run 3: 30 MHz to 200 MHz with a biconical antenna in vertical orientation
• Test run 4: 200 MHz to 1,000 MHz with a logarithmic antenna in horizontal orientation
• Test run 5: 200 MHz to 1,000 MHz with a logarithmic antenna in vertical orientation

Each graph will show a series of three limit lines: one for each of the three detectors that are used on the
spectrum analyzer to gather the data—one for the peak detector, one for the quasi-peak detector, and one
for the average detector. A limited number of quasi-peak and average data points were taken to save test
time. The test program selected these data points based on the frequencies where the peak detector was
closest to the limit line.

The TIDA-01429 passed Class 5 CISPR 25 radiated emissions per the ALSE method without the input pi
filter populated or a CMC populated on the CAN bus lines.

Figure 53 shows the dipole antenna that is 1-m in front of the test setup in the vertical position.

Figure 53. Radiated Emissions Dipole Antenna Setup
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Figure 54 shows the radiated emissions results for test run one. As shown, the pair of modules pass the
CISPR Class 5 broadcast radiated emissions limit lines.

Figure 54. Radiated Emissions Dipole Antenna Results

Next to measure the emissions for the frequency range of 30 MHz to 200 MHz, a biconical antenna was
used. The emissions measurements for this antenna must be performed in both the horizontal and vertical
orientations. Figure 55 shows the biconical antenna in the horizontal orientation that is 1-m in front of the
test setup (test run two).

Figure 55. Radiated Emissions With Horizontal Biconical Antenna Setup
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Figure 56 shows the radiated emissions results for this setup.

Figure 56. Horizontal Biconical Antenna Results

After running the emissions measurements in the horizontal orientation, the antenna was turned to the
vertical orientation as shown in Figure 57 (test run three).

Figure 57. Radiated Emissions With Vertical Biconical Antenna Setup
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Figure 58 shows the test results. As shown, the pair of modules pass the CISPR Class 5 broadcast
radiated emissions limit lines with the biconical antenna in both horizontal and vertical orientations.

Figure 58. Vertical Biconical Antenna Results

Lastly to measure the emissions for the frequency range of 200 MHz to 1000 MHz, a logarithmic antenna
was used. Again, the emissions measurements with this antenna must be performed in both the horizontal
and vertical orientations. Figure 59 shows the logarithmic antenna in the horizontal orientation that is 1-m
in front of the test setup (test run four).

Figure 59. Radiated Emissions With Horizontal Logarithmic Antenna Setup
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Figure 60 shows the radiated emissions results for this setup.

Figure 60. Horizontal Logarithmic Antenna Results

After running the emissions measurements in the horizontal orientation the antenna was turned to the
vertical orientation as shown in Figure 61 (test run five).

Figure 61. Radiated Emissions With Vertical Logarithmic Antenna Setup
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Figure 62 shows the test results. As shown, the pair of modules pass the CISPR Class 5 broadcast
radiated emissions limit lines with the logarithmic antenna in both horizontal and vertical orientations.

Figure 62. Vertical Logarithmic Antenna Results

3.2.13 CISPR 25 Conducted Emissions Testing - Voltage Method
Conducted emissions testing was also performed using a pair of modules in an anechoic chamber. The
test methodology followed was the Conducted emissions from components / modules - Voltage method
per the CISPR 25 Edition 4.0 standard. In this test supply lines between the connector of the module and
the artificial network (sometimes referred to as a line impedance stabilization network or LISN) must be
between 200 mm and 400 mm long. The same two modules with a 1.7-m harness between them were
used for this testing. Both the slave node and the master node were placed on top of a low-relative
permittivity support. This setup is shown in Figure 63.

Figure 63. Conducted Emissions Setup
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This test is performed two times: one on the positive power supply line and a second on the power return
line (ground). The measurement is performed by connecting the spectrum analyzer to the measuring port
of the artificial network for the battery supply line and the measuring port of the artificial network for the
power return line, which are shown in Figure 64.

Figure 64. Artificial Networks with Measuring Ports for Conducted Emissions
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As shown in Figure 65 and Figure 66, the TIDA-01429 passes the CISPR 25 conducted emissions using
the voltage method with the Class 4 limit lines.

Figure 65. Conducted Emissions Results for Power Supply Line

Figure 66. Conducted Emissions Results for Power Supply Return Line
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3.2.14 ISO 11452-4 Bulk Current Injection Immunity Testing
BCI testing is an immunity test defined by ISO 11452-4 where noise is coupled onto a wire harness using
a current injection probe. The amplitude at each frequency point is increased until there is a failure or the
required level has been reached. To pass this immunity test the module has to continue to operate
normally at all test frequencies for amplitudes greater than or equal to the limit line. This test was
performed with all four conductors of the wire harness run through the current injection probe with the
probe 450 mm from the slave node and 750 mm from the slave node as shown in Figure 67.

Figure 67. Bulk Current Injection Test Setup

The health of the units were tracked by monitoring the status LEDs using a coaxial camera feed that was
run out of the shielded room to a television.
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Figure 68 shows the immunity performance when the current injection probe was place 450 mm from the
slave node, and Figure 69 shows the immunity performance when the current injection probe was place
750 mm from the slave node. As shown in both figures, neither test showed any deviations and passed up
to the required power levels.

Figure 68. BCI Results With Current Injection Probe at 450 mm

Figure 69. BCI Results With Current Injection Probe at 750 mm
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4 Design Files

4.1 Schematics
To download the schematics, see the design files at TIDA-01429.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-01429.

4.3 PCB Layout Recommendations
This section will cover the following topics:
• Layout considerations for the boost controller
• Layout considerations for the buck converter
• Layout considerations for the LDO
• Layout considerations for the CAN physical layer interface
• The board stackup
• Link to the layer plots for the PCB

4.3.1 Boost Controller Layout Considerations
To produce an optimal power solution with the LM5022-Q1, good layout and design of the PCB are as
critical as component selection. The following are the several guidelines in order to create a good PCB
layout:
• Using a low-ESR ceramic capacitor, place input capacitors as close as possible to the VIN and GND

pins of the LM5022-Q1.
• Using a low-ESR ceramic capacitor, place output capacitors as close to the load as possible of the

LM5022-Q1.
• Using a low-ESR ceramic capacitor place the VCC filtering capacitor as close to the VCC and GND

pins of the LM5022-Q1.
• Minimize the loop area formed by the output capacitor connections, output diode, and sense resistor

making sure the cathode of the diode and output capacitors are close to the sense resistor ground.
• The sense resistor should be connected to the CS pin with a separate trace made as short as

possible. This trace should be routed away from the inductor and the switch node (where diode, FET,
and inductor connect).

• Minimize the trace length to the FB pin by positioning feedback resistors close to the LM5022-Q1.
• Route the VOUT sense path away from noisy nodes and connect it as close as possible to the positive

side of the output capacitors.

4.3.2 Buck Converter Layout Considerations
The following are some guidelines to follow for the TPS57140-Q1 layout:
• Providing a low-inductance, low-impedance ground path is critical. Therefore, use wide and short

traces for the main current paths.
• Care should be taken to minimize the loop area formed by the input bypass capacitor, VIN pin, PH pin,

catch diode, inductor, and output capacitors. Use thick planes and traces to connect these
components. For operation at a full-rated load, the top-side ground area must provide adequate heat
dissipating area.

• The GND pin should be tied directly to the thermal pad under the device and the thermal pad.
• The thermal pad should be connected to any internal PCB ground planes using multiple vias directly

under the device.
• The PH pin should be routed to the cathode of the catch diode and to the output inductor. Because the

PH connection is the switching node, the catch diode and output inductor should be located close to
the PH pin as possible.
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• Place the VSENSE voltage-divider resistor network away from switching node and route the feedback
trace with minimum interaction with any noise sources associated with the switching components.

• The RT/CLK pin is sensitive to noise, so the RT resistor should be located as close as possible to the
device and should be routed with minimal trace lengths.

• Place compensation network components away from switching components and route the connections
away from noisy nodes.

• The bootstrap capacitor must be placed as close as possible to the IC pin.

4.3.3 LDO Layout Considerations
Input and output capacitors must be placed as close to the device pins as possible. To improve ac
performance (such as PSRR, output noise, and transient response), TI recommends that the board be
designed with separate ground planes for VIN and VOUT with the ground plane connected only at the
device GND pin. In addition, the output capacitor ground connection must be connected directly to the
device GND pin. Lastly, high-ESR capacitors may degrade PSRR performance.

4.3.4 CAN Physical Layer Layout Considerations
Because the CAN physical layer is an external wired interface and can be subjected to transients with
frequencies ranging from 100s of Hz to 3 GHz, high-frequency layout techniques must be applied during
PCB design. The following are some guidelines to follow for the TCAN1042V-Q1 layout:
• TVS diodes and bus filtering capacitors should be placed as close to the onboard connectors as

possible to prevent noisy transient events from propagating further into the PCB and system.
• Provide low-inductance supply and ground connections.
• Use at least two vias in parallel when connecting a power net to another layer on the PCB. This will

minimize trace inductance.
• Bypass and bulk capacitors should be placed as close as possible to the supply terminals of

transceiver (VCC and VIO).

4.3.5 Board Layer Stackup
The board has been designed using two layers. Both top and bottom layers have signals and power traces
routed, but a majority of the bottom layer has been used for a large, low-impedance ground plane. See
Table 5 for the board stackup. The board is 101.6 mm × 76.2 mm (4" × 3") and uses standard 1-oz copper
foil on top and bottom layers. The total board thickness is approximately 63 mils.

Table 5. TIDA-01429 Board Layer Stackup

LAYER
NAME TYPE MATERIAL THICKNESS (MIL) DIELECTRIC

MATERIAL
DIELECTRIC
CONSTANT

Top overlay Overlay — — — —
Top solder Solder mask Surface material 0.4 Solder resist 3.5
Top layer Signal Copper 1.4 — —
Dielectric1 Dielectric Core 59.2 FR-4 4.8

Bottom layer Signal Copper 1.4 — —
Bottom solder Solder mask Surface material 0.4 Solder resist 3.5

Bottom
overlay Overlay — — — —

4.3.6 Layout Prints
To download the layer plots, see the design files at TIDA-01429.

4.4 Altium Project
To download the Altium project files, see the design files at TIDA-01429.
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4.5 Gerber Files
To download the Gerber files, see the design files at TIDA-01429.

4.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-01429.

5 Related Documentation
1. Texas Instruments, LM5022-Q1 2.2MHz, 60 V Low-Side Controller For Boost and SEPIC, LM5022-Q1

Datasheet (SNVSAG9)
2. Texas Instruments, TPS57140-Q1 1.5-A 42-V Step-Down DC-DC Converter With Eco-mode™ Control,

TPS57140-Q1 Datasheet (SLVSAP3)
3. Texas Instruments, TLV713P-Q1 Capacitor-Free, 150-mA, Low-Dropout Regulator With Foldback

Current Limit for Portable Devices, TLV71333P-Q1 Datasheet (SBVS266)
4. Texas Instruments, TCAN1042-Q1 Automotive Fault Protected CAN Transceiver with CAN FD,

TCAN1042V-Q1 Datasheet (SLLSES9)
5. Texas Instruments, TMS320F2803x Piccolo™ Microcontrollers, TMS320F28030PAGQ Datasheet

(SPRS584)
6. Texas Instruments, Automotive Catalog Dual Inverter Buffer/Driver with Open-Drain Output,

SN74LVC2G06-Q1 Datasheet (SCES617)
7. Texas Instruments, Automotive Single Inverter Gate, SN74AHCT1G04-Q1 Datasheet (SCLS510)
8. Texas Instruments, CSD17313Q2 30-V N-Channel NexFET™ Power MOSFET, CSD17313Q2

Datasheet (SLPS260)

5.1 Trademarks
C2000, Piccolo, NexFET, PowerPAD, Eco-mode, Code Composer Studio are trademarks of Texas
Instruments Incorporated.
All other trademarks are the property of their respective owners.

6 Terminology
Body control module—An automotive electronic control unit responsible for monitoring and controlling

vehicle loads. Some examples include interior lighting, exterior lighting, heating ventilation and air
conditioning (HVAC), powered windows, and powered door locks.

Controller— The term controller is used when referring to a power regulator that has external FETs.

Converter— The term converter is used when referring to a power regulator that has integrated FETs.

Discrete SBC—The term Discrete SBC (System Basis Chip) is used to refer to the discrete
implementation of functional blocks that are commonly integrated into a single IC. This includes
power and networking blocks.

Non-synchronous —When used in reference to a power regulator, this term means that the regulator
uses one FET and one diode for power conversion.

Synchronous —When used in reference to a power regulator this term means that the regulator uses two
FETs for power conversion. By using a second FET instead of an external diode power losses can
be reduced improving overall efficiency.

7 About the Author
JOHN P. GRIFFITH is a systems engineer at Texas Instruments. As a member of the Automotive
Systems Engineering team, John specializes on body control modules and gateway modules, creating end
equipment block diagrams, and reference designs for automotive customers. John earned his bachelor of
science and master of science in electrical engineering from Rochester Institute of Technology in
Rochester, New York.
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• Changed The TIDA-01429 reference design implements a discrete system basis chip (SBC) with wide-input voltage boost
controller followed by a wide-input voltage boost converter set to 8-V. The boost converter is followed by a wide-input
voltage, fixed 5-V buck converter used for powering a controller area network (CAN) transceiver and a compact, fixed 3.3-
V linear drop-out (LDO) regulator for supplying the C2000™ microcontroller (MCU). to The TIDA-01429 reference design
implements a discrete system basis chip (SBC) with wide-input voltage boost circuit with output voltage set to 8-V. The
boost circuit is followed by a wide-input voltage buck converter with output voltage set to 5-V which used for powering a
controller area network (CAN) transceiver and a compact, fixed 3.3-V linear drop-out (LDO) regulator for supplying the
C2000™ microcontroller (MCU). ........................................................................................................ 1
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