
TMS320VC5507/5509 DSP
Universal Serial Bus (USB) Module

Reference Guide

Literature Number: SPRU596A
June 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
https://www.ti.com/audio
https://www.ti.com/automotive
https://www.ti.com/broadband
https://www.ti.com/digitalcontrol
https://www.ti.com/military
https://www.ti.com/opticalnetwork
https://www.ti.com/security
https://www.ti.com/telephony
https://www.ti.com/video
https://www.ti.com/wireless

3Universal Serial Bus (USB) ModuleSPRU596A

Preface

Read This First

About This Manual

This manual describes the features and operation of the Universal Serial Bus
(USB) module that is available on the TMS320VC5507, TMS320VC5509, and
TMS320VC5509A digital signal processors (DSPs) in the TMS320C55x
(C55x) DSP generation.

Notational Conventions

This document uses the following conventions:

� In most cases, hexadecimal numbers are shown with the suffix h. For
example, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers often are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

� If a signal or pin is active low, it has an overbar. For example, the RESET
signal is active low.

� Register bits are sometimes referenced with the following notations:

Notation Description Example

Register(n−m) Bits n through m of Register R(15−0) represents the 16 least
significant bits of register R.

E[n:m] Range of bits En through Em E[7:0] represents E7, E6, E5,
E4, E3, E2, E1, and E0.

� The following terms are used to name portions of data:

Term Description Example

LSB Least significant bit In AC0(15−0), bit 0 is the LSB.

MSB Most significant bit In AC0(15−0), bit15 is the MSB.

LSByte Least significant byte In AC0(15−0), bits 7−0 are the LSByte.

MSByte Most significant byte In AC0(15−0), bits15−8 are the MSByte.

Related Documentation From Texas Instruments

4 Universal Serial Bus (USB) Module SPRU596A

Related Documentation From Texas Instruments

The following documents describe the C55x devices and related support tools.
Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

TMS320VC5507 Fixed-Point Digital Signal Processor Data Manual (litera-
ture number SPRS244) describes the features of the TMS320VC5507
fixed-point DSP and provides signal descriptions, pinouts, electrical
specifications, and timings for the device.

TMS320VC5509 Fixed-Point Digital Signal Processor Data Manual
(literature number SPRS163) describes the features of the
TMS320VC5509 fixed-point DSP and provides signal descriptions,
pinouts, electrical specifications, and timings for the device.

TMS320VC5509A Fixed-Point Digital Signal Processor Data Manual
(literature number SPRS205) describes the features of the
TMS320VC5509A fixed-point DSP and provides signal descriptions,
pinouts, electrical specifications, and timings for the device.

TMS320C55x Technical Overview (literature number SPRU393) introduces
the TMS320C55x DSPs, the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform. Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x DSPs.

TMS320C55x DSP Peripherals Overview Reference Guide (literature
number SPRU317) introduces the peripherals, interfaces, and related
hardware that are available on TMS320C55x DSPs.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

Trademarks

5Universal Serial Bus (USB) ModuleSPRU596A

TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C/C++ Compiler. This C/C++
compiler accepts ISO standard C and C++ source code and produces
assembly language source code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP Programmer’s Guide (literature number SPRU376)
describes ways to optimize C and assembly code for the TMS320C55x
DSPs and explains how to write code that uses special features and
instructions of the DSPs.

Trademarks

TMS320C5000, TMS320C55x, and C55x are trademarks of
Texas Instruments.

Other trademarks are the property of their respective owners.

Related Documentation From Texas Instruments / Trademarks

6 Universal Serial Bus (USB) Module SPRU596A

This page is intentionally left blank.

Contents

7Universal Serial Bus (USB) ModuleSPRU596A

Contents

1 USB Concepts Overview 15.
1.1 Terminology 15.
1.2 Data Toggle Mechanism 17.

2 Introduction to the USB Module 18.
2.1 Block Diagram of the USB Module 18.
2.2 Connection of the USB Module to the Bus 22.
2.3 Transfer of Data Between the USB Host and the DSP Memory 23.
2.4 Clock Generation for the USB Module 23.

2.4.1 USB Clock Generator on TMS320VC5509 Devices Versus
TMS320VC5507/5509A Devices 24.

2.4.2 DPLL Operation 26.
2.4.3 APLL Operation (TMS320VC5507/5509A Devices Only) 30.
2.4.4 Idle Mode Considerations 33.

3 USB Buffer Manager (UBM) 34.

4 USB DMA Controller 37.
4.1 Advantage of Using the USB DMA Controller 37.
4.2 Things To Consider Before Using the USB DMA Controller 37.
4.3 Interaction Between the CPU and the USB DMA Controller 38.
4.4 Automatic Alternating Accesses of the X and Y Buffers 42.
4.5 DMA Reload Operation (Automatic Register Swapping) 42.
4.6 Transfer Count Saved to DSP Memory for an OUT Transfer 43.
4.7 Configuring the USB DMA Controller 44.

4.7.1 Set the Transfer Size 44.
4.7.2 Set the DSP Memory Address 45.
4.7.3 Enable/Disable a DMA Reload Operation 45.
4.7.4 Enable/Disable DMA Interrupt Requests 46.
4.7.5 Select the Endianness (Byte Orientation) of Data 46.
4.7.6 Enable/Disable Concatenation 47.
4.7.7 Select Whether a Short Packet is Required to End a USB Transfer 48.
4.7.8 Select Whether a Missing Packet is an Error During Isochronous

Transfers 48.

Contents

8 Universal Serial Bus (USB) Module SPRU596A

4.8 Monitoring DMA Transfers 48.
4.8.1 Checking the Transfer Count 48.
4.8.2 Determining Whether a DMA Transfer is in Progress or is Done 49.
4.8.3 Determining Whether a DMA Reload Operation is in Progress or is Done 49. . . .
4.8.4 Checking for an Overflow or Underflow Condition 50.
4.8.5 Watching for a Missing Packet During an Isochronous Transfer 50.

4.9 USB DMA State Tables and State Diagrams 51.

5 Interrupt Activity in the USB Module 65.
5.1 Bus Interrupt Requests 66.
5.2 Endpoint Interrupt Requests 68.
5.3 USB DMA Interrupt Requests 70.

6 Power, Emulation, and Reset Considerations 72.
6.1 Putting the USB Module into Its Idle Mode 72.
6.2 USB Module Indirectly Affected by Certain Idle Configurations 72.
6.3 USB Module During Emulation 72.
6.4 Resetting the USB Module 73.

7 USB Module Registers 74.
7.1 High-Level Summary of USB Module Registers 74.
7.2 DMA Registers 78.

7.2.1 USB DMA Control Register (USBxDCTLn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 79.

7.2.2 USB DMA Address Registers (USBxDADHn and USBxDADLn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 83.

7.2.3 USB DMA Size Register (USBxDSIZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 84.

7.2.4 USB DMA Count Register (USBxDCTn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 85.

7.2.5 USB DMA Reload-Address Registers (USBxDRAHn and USBxDRALn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 86.

7.2.6 USB DMA Reload-Size Register (USBxDRSZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 87.

7.3 Definition Registers for Endpoints IN1−IN7 and OUT1−OUT7 87.
7.3.1 Endpoint Configuration Register for INn (USBICNFn)

(n = 1, 2, 3, 4, 5, 6, or 7) 91.
7.3.2 Endpoint Configuration Register for OUTn (USBOCNFn)

(n = 1, 2, 3, 4, 5, 6, or 7) 92.
7.3.3 Endpoint Buffer Base Address Registers for INn or OUTn

(USBxBAXn, USBxBAYn) (x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 94.
7.3.4 Endpoint Buffer Count Registers for INn or OUTn (USBxCTXn, USBxCTYn)

(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 96.
7.3.5 Endpoint X-/Y-Buffer Size Register for INn or OUTn (USBxSIZn)

(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7) 100.
7.3.6 Endpoint Buffer Size and Count Extension Registers

(USBISIZHn, USBOCTXHn, and USBOCTYHn) (n = 1, 2, 3, 4, 5, 6, or 7) 102. . .

Contents

9Universal Serial Bus (USB) ModuleSPRU596A

7.4 Definition Registers for Endpoints IN0 and OUT0 103.
7.4.1 Endpoint Configuration Register for IN0 or OUT0 (USBxCNF0)

(x = I or O) 103.
7.4.2 Endpoint Buffer Count Register for IN0 or OUT0 (USBxCT0)

(x = I or O) 105.
7.5 Interrupt Registers 106.

7.5.1 Interrupt Source Register (USBINTSRC) 106.
7.5.2 Endpoint Interrupt Flag Register (USBxEPIF)

(x = I or O) 109.
7.5.3 Endpoint Interrupt Enable Register (USBxEPIE)

(x = I or O) 110.
7.5.4 DMA GO Interrupt Flag Register (USBxDGIF)

(x = I or O) 111.
7.5.5 DMA RLD Interrupt Flag Register (USBxDRIF)

(x = I or O) 113.
7.5.6 DMA Interrupt Enable Register (USBxDIE)

(X = I or O) 114.
7.6 General Control and Status Registers 115.

7.6.1 Global Control Register (USBGCTL) 116.
7.6.2 Frame Number Registers (USBFNUML and USBFNUMH) 117.
7.6.3 PSOF Interrupt Timer Counter (USBPSOFTMR) 117.
7.6.4 USB Control Register (USBCTL) 118.
7.6.5 USB Interrupt Flag Register (USBIF) 120.
7.6.6 USB Interrupt Enable Register (USBIE) 121.
7.6.7 USB Device Address Register (USBADDR) 123.
7.6.8 USB Idle Control Register (USBIDLECTL) 123.

Revision History 125.

Figures

10 Universal Serial Bus (USB) Module SPRU596A

Figures

1 Conceptual Block Diagram of the USB Module 19.
2 Connection of the USB Module to the Bus (Full-Speed Connection) 22.
3 Path for Data Transferred Between the Host and the DSP Memory 23.
4 Clock Generation for the USB Module 24.
5 USB PLL Selection Register (USBPLLSEL) 25.
6 USB Digital PLL Control Register (USBDPLL) 26.
7 USB Analog PLL Control Register (USBAPLL) 31.
8 Role of a NAK Bit in USB Activity at an OUT Endpoint 35.
9 Role of a NAK Bit in USB Activity at an IN Endpoint 36.
10 Activity for DMA Transfers 40.
11 Storage of Transfer Count for an OUT Transfer 44.
12 The Effect of END = 1 on USB DMA Transfers 47.
13 State Diagram: Missing Packet Response for Isochronous IN DMA Transfer 63.
14 State Diagram: Missing Packet Response for Isochronous OUT DMA Transfer 64.
15 Possible Sources of a USB Interrupt Request 65.
16 Enable Paths for the Bus Interrupt Requests 67.
17 Enable Paths for the Endpoint Interrupt Requests 69.
18 Enable Paths for the USB DMA Interrupt Requests 71.
19 USB DMA Control Register (USBxDCTLn) 80.
20 USB DMA Address Registers (USBxDADLn and USBxDADHn) 84.
21 USB DMA Size Register (USBxDSIZn) 85.
22 USB DMA Count Register (USBxDCTn) 85.
23 USB DMA Reload-Address Registers (USBxDRALn and USBxDRAHn) 86.
24 USB DMA Reload-Size Register (USBxDRSZn) 87.
25 Endpoint Definition Registers for INn and OUTn in the Isochronous Mode 89.
26 Endpoint Definition Registers for INn and OUTn in the Non-Isochronous Mode 90.
27 Endpoint Configuration Register for INn (USBICNFn) 91.
28 Endpoint Configuration Register for OUTn (USBOCNFn) 93.
29 Endpoint Buffer Base Address Registers for INn or OUTn

(USBxBAXn and USBxBAYn) 95.
30 Endpoint Buffer Count Registers for INn or OUTn

(USBxCTXn and USBxCTYn) 96.
31 Endpoint Extended Buffer Count Values for INn in the Isochronous

Mode (ISO = 1) 98.
32 Endpoint Extended Buffer Count Values for OUTn in the Isochronous

Mode (ISO = 1) 99.
33 Endpoint X-/Y-Buffer Size Register for INn or OUTn (USBxSIZn) 100.

Figures

11Universal Serial Bus (USB) ModuleSPRU596A

34 Endpoint Extended Buffer Size Values for INn and OUTn in the Isochronous
Mode (ISO = 1) 101.

35 Endpoint Buffer Size and Count Extension Registers
(USBISIZHn, USBOCTXHn, and USBOCTYHn) 102.

36 Endpoint Configuration Register for IN0 or OUT0 (USBxCNF0) 103.
37 Endpoint Buffer Count Register for IN0 (USBICT0) 105.
38 Endpoint Buffer Count Register for OUT0 (USBOCT0) 105.
39 Interrupt Source Register (USBINTSRC) 107.
40 OUT Endpoint Interrupt Flag Register (USBOEPIF) 109.
41 IN Endpoint Interrupt Flag Register (USBIEPIF) 109.
42 OUT Endpoint Interrupt Enable Register (USBOEPIE) 110.
43 IN Endpoint Interrupt Enable Register (USBIEPIE) 111.
44 OUT Endpoint DMA GO Interrupt Flag Register (USBODGIF) 112.
45 IN Endpoint DMA GO Interrupt Flag Register (USBIDGIF) 112.
46 OUT Endpoint DMA RLD Interrupt Flag Register (USBODRIF) 113.
47 IN Endpoint DMA RLD Interrupt Flag Register (USBIDRIF) 113.
48 OUT Endpoint DMA Interrupt Enable Register (USBODIE) 114.
49 IN Endpoint DMA Interrupt Enable Register (USBIDIE) 115.
50 Global Control Register (USBGCTL) 116.
51 Frame Number Registers (USBFNUML and USBFNUMH) 117.
52 PSOF Interrupt Timer Counter (USBPSOFTMR) 118.
53 USB Control Register (USBCTL) 118.
54 USB Interrupt Flag Register (USBIF) 120.
55 USB Interrupt Enable Register (USBIE) 121.
56 USB Device Address Register (USBADDR) 123.
57 USB Idle Control Register (USBIDLECTL) 123.

Tables

12 Universal Serial Bus (USB) Module SPRU596A

Tables

1 Bits of the USB PLL Selection Register (USBPLLSEL) 25.
2 Bits of the USB Digital PLL Control Register (USBDPLL) 26.
3 DPLL Options for the USB Module Clock Frequency 29.
4 Bits of the USB Analog PLL Control Register (USBAPLL) 31.
5 APLL Options for the USB Module Clock Frequency 33.
6 DMA Transfers 39.
7 Primary USB DMA Size and Address Registers and the Corresponding

Reload Registers 42.
8 State Table: Non-Isochronous IN DMA Transfer 52.
9 State Table: Non-Isochronous OUT DMA Transfer 54.
10 State Table: Isochronous IN DMA Transfer 56.
11 State Table: Isochronous OUT DMA Transfer 60.
12 Descriptions of the Bus Interrupt Requests 66.
13 High-Level Summary of the USB Module Registers 75.
14 USB DMA Registers for Endpoint INn or OUTn (n = 1, 2, 3, 4, 5, 6, or 7) 79.
15 Bits of a USB DMA Control Register (USBxDCTLn) 80.
16 Bits of USB DMA Address Registers (USBxDADLn and USBxDADHn) 84.
17 Bits of a USB DMA Size Register (USBxDSIZn) 85.
18 Bits of a USB DMA Count Register (USBxDCTn) 85.
19 Bits of USB DMA Reload-Address Registers (USBxDRALn and USBxDRAHn) 86.
20 Bits of a USB DMA Reload-Size Register (USBxDRSZn) 87.
21 Definition Registers For Endpoint INn or OUTn (n = 1, 2, 3, 4, 5, 6, or 7) 88.
22 Bits of the Endpoint Configuration Register for INn (USBICNFn) 91.
23 Bits of the Endpoint Configuration Register for OUTn (USBOCNFn) 93.
24 Bits of the Endpoint Buffer Base Address Registers for INn or OUTn

(USBxBAXn and USBxBAYn) 95.
25 Bits of the Endpoint Buffer Count Registers for INn or OUTn

(USBxCTXn and USBxCTYn) 97.
26 Bits of the Endpoint n X-/Y-Buffer Size Register for INn or OUTn (USBxSIZn) 100.
27 Bits of the Endpoint Buffer Size and Count Extension Registers

(USBISIZHn, USBOCTXHn, and USBOCTYHn) 103.
28 Bits of the Endpoint Configuration Register for IN0 or OUT0 (USBxCNF0) 104.
29 Bits of the Endpoint Buffer Count Register for IN0 or OUT0 (USBxCT0) 106.
30 Bits of the Interrupt Source Register (USBINTSRC) 107.
31 Interrupt Sources Matched to INTSRC Values 108.
32 Bits of an Endpoint Interrupt Flag Register (USBxEPIF) 110.
33 Bits of an Endpoint Interrupt Enable Register (USBxEPIE) 111.

Tables

13Universal Serial Bus (USB) ModuleSPRU596A

34 Bits of an Endpoint DMA GO Interrupt Flag Register (USBxDGIF) 112.
35 Bits of an Endpoint DMA RLD Interrupt Flag Register (USBxDRIF) 114.
36 Bits of an Endpoint DMA Interrupt Enable Register (USBxDIE) 115.
37 Bits of the Global Control Register (USBGCTL) 116.
38 Bits of the Frame Number Registers (USBFNUML and USBFNUMH) 117.
39 Bits of the PSOF Interrupt Timer Counter (USBPSOFTMR) 118.
40 Bits of the USB Control Register (USBCTL) 118.
41 Bits of the USB Interrupt Flag Register (USBIF) 120.
42 Bits of the USB Interrupt Enable Register (USBIE) 122.
43 Bits of the USB Device Address Register (USBADDR) 123.
44 Bits of the USB Idle Control Register (USBIDLECTL) 124.

Examples

14 Universal Serial Bus (USB) Module SPRU596A

Examples

1 DMA Reload Operation for Endpoint OUT3 43.
2 Loading the Endpoint Buffer Base Addresses 96.

15Universal Serial Bus (USB) ModuleSPRU596A

Universal Serial Bus (USB) Module

With the USB module, you can use the DSP to create a full speed USB slave
device that is compliant with Universal Serial Bus Specification Version 2.0.
This chapter explains the architecture of the module and how to program the
module.

1 USB Concepts Overview
This section explains USB concepts and terminology used in this chapter.

1.1 Terminology

In a USB system, the host is the master. The host initiates all data transfers
between itself and attached USB devices. Therefore, the direction of a data
transfer is described relative to the host:

OUT transfer A transfer of data from the host to a device:

Host → Device

IN transfer A transfer of data from a device to the host:

Host ← Device

Each IN or OUT transfer can be one of the following types. The types of
transfers on a USB are:

Control transfer The data transfer used by the host to send commands
to a USB device, including commands to enumerate
the device when it is first attached. Control transfers
include error checking.

Bulk transfer The data transfer used by the host to send or receive
a large amount of non-time-critical data. The data
transfer can be used when transfer time is not critical.
The host only allocates bus time for bulk transfers
when the time is not need by transfers of the other
types. Bulk transfers include error checking. A device
such as a printer is a good application for this type of
transfer.

USB Concepts Overview

Universal Serial Bus (USB) Module16 SPRU596A

Interrupt transfer The data transfer used when a USB device must send
or receive moderate amounts of data periodically with
minimum latency. Interrupt transfers include error
checking. Typical devices that use the interrupt
transfer are keyboards and joysticks.

Isochronous
transfer

The data transfer used by USB devices to send or
receive data in real time at a constant rate. The
isochronous transfers can handle more data than
interrupt transfers, but no error checking is performed.
A typical candidate for isochronous transfers is a
digital speaker system.

Note:

From an implementation standpoint, bulk and interrupt transfers are treated
the same way in the C55x USB module. The only difference is that the
interrupt transfer is initiated periodically by the host, whereas a bulk transfer
is initiated by the host whenever the bus is not used for other transfers.

For data transfer between a USB host and a USB device, the data passes
through an endpoint in the device:

Endpoint A designated storage location within a USB device.
Each endpoint in a device is uniquely identified by its
number and its direction (IN or OUT).

OUT endpoint An endpoint that holds data received from the USB
host. To use data from the host, the USB device must
read the data from an OUT endpoint.

Each device must have an endpoint OUT0 to be used
for control transfers.

IN endpoint An endpoint that holds data to be sent to the USB host.
To send data to the host, the USB device must write
to an IN endpoint.

Each device must have an endpoint IN0 to be used for
control transfers.

The overall characteristics of the USB device and the type of each endpoint
must be reported to the host when the device is attached to the bus for the first
time. This process is called enumeration.

USB Concepts Overview

17Universal Serial Bus (USB) ModuleSPRU596A

The USB bandwidth can be shared by multiple USB devices. Data is
transferred on the bus at regular (1-ms) intervals. Each of these intervals is
called a frame, and the host divides up the frame for all the devices on the bus.
As each new USB device is recognized and successfully enumerated by the
host, it gains a portion of the frame. The size of the portion depends on factors
such as the type of transfer (for example, isochronous versus bulk) and the
amount of bandwidth that is not being used by other devices that are already
on the bus.

1.2 Data Toggle Mechanism

For non-isochronous transfers, USB devices use a data toggle mechanism to
detect transmission errors and to keep the transmitter and the receiver of
USB data synchronized throughout a transfer. The data toggle mechanism
requires two data packet types (DATA0 and DATA1) and two toggle bits (one
in the transmitter and one in the receiver). Each packet transmitted is a DATA0
packet or a DATA1 packet, depending on the value of the transmitter�s toggle
bit (0 = DATA0; 1 = DATA1). If the receiver is synchronized, its toggle bit
matches that of the transmitter, and the receiver expects the data type that was
transmitted. Once the packet is successfully received, the receiver
complements its toggle bit and sends an acknowledgement to the transmitter.
When the acknowledgement arrives at the transmitter, the transmitter
complements its toggle bit.

The first packet of a USB transfer is a DATA0 packet. Subsequent packets
alternate in type (DATA1, DATA0, DATA1, and so on).

Introduction to the USB Module

Universal Serial Bus (USB) Module18 SPRU596A

2 Introduction to the USB Module
The USB module described in this section is a USB 2.0-compliant, full-speed
(12 Mbps) slave module.

The C55x USB module has 16 endpoints:

� Two control endpoints (for control transfers only): OUT0 and IN0.

� Fourteen general-purpose endpoints (for other types of transfers):
OUT1−OUT7 and IN1−IN7. Each of these endpoints can support:

� Bulk, interrupt, and isochronous transfers.

� An optional double-buffer scheme for fast data throughput.

� A dedicated DMA channel. A DMA controller inside the USB module
can pass data between the general-purpose endpoints and the DSP
memory while the CPU performs other tasks. (The USB DMA
controller cannot access the control endpoints.)

2.1 Block Diagram of the USB Module

Figure 1 contains a conceptual block diagram of the USB module. The shaded
blocks in the figure are outside the USB module. The list following the figure
describes each of the main components of the module.

Introduction to the USB Module

19Universal Serial Bus (USB) ModuleSPRU596A

Figure 1. Conceptual Block Diagram of the USB Module

Data buffer for
endpoints IN1−IN7 and
endpoints OUT1−OUT7

endpoint OUT0
Data buffer for

endpoint IN0
Data buffer for

Setup data buffer

Buffer RAM
arbiter

DMA
registers

USB DMA
controller

DSP
memory

DSP
DMA

controller

Control and
status registers

DP�

DN�

Data
on

USB

Serial
interface

engine (SIE)

OUT

IN

CPU

Internally connected
to USB I/O supply
rail

Board designer
must supply
1.5K resistor

PU�

Connect/disconnect
switch controlled by

CONN bit of USBCTL

Definition
registers for
endpoints

OUT1−OUT7

registers for
endpoints

Definition

IN1−IN7

Buffer
RAM

UBM

� A more detailed figure of the pin connections is provided in section 2.2 (page 22).

Introduction to the USB Module

Universal Serial Bus (USB) Module20 SPRU596A

� Interface pins. The following table introduces the three pins shown in
Figure 1. More detailed pin connections are shown in Figure 2 (page 22).

Pin Description

DP Connect this pin to the USB connector terminal that carries the positive
differential data.

DN Connect this pin to the USB connector terminal that carries the negative
differential data.

PU Use this pin to connect a 1.5-Ω pullup resistor to the DP line. A
software-controlled switch connects the pullup resistor to the USB
I/O supply rail internally.

When the CPU sets the connect bit of USBCTL (CONN = 1), the switch
closes and completes the pullup circuit, causing the USB host to detect
the USB module on the bus and to start the enumeration process.

To disconnect the device from the USB system, clear the CONN bit. The
switch will open and disconnect the pullup resistor.

� Serial interface engine (SIE). The SIE is the USB protocol handler. It
parses the USB bit stream for data packets that are meant for the USB
device. For an OUT transfer, the SIE converts the serial data to parallel
data and passes them to the USB buffer manager. For an IN transfer, the
SIE converts parallel data from the UBM to serial data, and transmits them
over the USB.

The SIE also performs error-checking. For an OUT transfer, the SIE does
the error checking and transfers only the good data to the UBM. For an IN
transfer, the SIE generates the necessary error-checking information
before sending the data on the bus.

� USB buffer manager (UBM) and the control and status registers. The
UBM controls data flow between the SIE and the buffer RAM. Most of the
control registers are used to control the behavior of the UBM, and most of
the status registers are modified by the UBM to notify the CPU when any
event occurs.

Introduction to the USB Module

21Universal Serial Bus (USB) ModuleSPRU596A

� Buffer RAM. The buffer RAM contains registers that are mapped in the
DSP I/O space. The buffer RAM consist of:

� Relocatable buffer space for each of the general-purpose endpoints
(3.5K bytes). A general-purpose endpoint can have one data buffer
(X buffer) or two data buffers (X buffer and Y buffer).

� A fixed-length (64-byte) data buffer for endpoint OUT0

� A fixed-length (64-byte) data buffer for endpoint IN0

� A fixed-length (8-byte) data buffer for a setup packet

� Definition registers. Each of the general-purpose endpoints has eight
definition registers that determine the endpoint characteristics.

� USB DMA controller and the DMA registers. The USB DMA controller
can transfer data between the DSP memory and the X and Y buffers of the
general-purpose endpoints. Each of these endpoints has a dedicated
DMA channel and a dedicated set of DMA registers for controlling and
monitoring activity in that channel. The CPU can read from or write to each
of these registers.

The USB DMA controller accesses memory via the auxiliary port of the
DSP DMA controller. This auxiliary port is shared by the USB DMA
controller and the host port interface (HPI). The USB DMA controller is
given the higher priority.

� Buffer RAM arbiter. The 8-bit-wide buffer RAM can be accessed by the
UBM, by the USB DMA controller, and by the DSP CPU. The buffer RAM
arbiter provides a fair access scheme by which these three requesters
share the buffer RAM.

The USB DMA controller only accesses the X and Y buffers of the
general-purpose endpoints. The controller uses 24-bit byte addresses to
access DSP memory.

The CPU can access the buffer RAM, including the definition registers, via
I/O space. The CPU writes 16-bit values to I/O space. However, when the
CPU writes to the RAM, the high eight bits are ignored, and when the CPU
reads from the RAM, the high eight bits are don�t cares.

Introduction to the USB Module

Universal Serial Bus (USB) Module22 SPRU596A

2.2 Connection of the USB Module to the Bus

Figure 2 shows the bus connections for the USB module. Rs(DP) and Rs(DN)
are series resistors required to match the output impedance of the drivers for
the differential data pins (DP and DN). Consult the device-specific data manual
for the required values of Rs(DP) and Rs(DN), as well as Cedge(DP), Cedge(DN),
and CL. The 1.5 kΩ pullup resistor, R(PU), is a USB specification requirement
for a full-speed device.

Setting the connect (CONN) bit of USBCTL connects the pullup (PU) pin to the
power supply pin, USBVDD. As a result, the USB host detects the USB module
on the bus and starts the enumeration process. Clearing the CONN bit
disconnects the two pins, resulting in a device-removal condition on the bus.

Figure 2. Connection of the USB Module to the Bus (Full-Speed Connection)

DP

DN

DSP

PU

USBVDD

CL

CL

D+

D−
Rs(DN)

Rs(DP)

R(PU)
1.5 k�

Cedge(DP)

Cedge(DN)

Connect/disconnect
switch controlled by

CONN bit of USBCTL

� Consult the device-specific data manual for the required values of Rs(DP), Rs(DN), Cedge(DP),
Cedge(DN), and CL.

Introduction to the USB Module

23Universal Serial Bus (USB) ModuleSPRU596A

2.3 Transfer of Data Between the USB Host and the DSP Memory

Figure 3 shows, at a high-level, how data travels between the USB host and
the DSP memory when a C55x DSP handles the USB activity for a USB device.
During IN transfers, the SIE (serial interface engine) converts the parallel data
from the UBM into a serial data stream for the host. During OUT transfers, the
SIE converts the serial data from the host into parallel format for the UBM. The
UBM either moves data from the SIE to the buffer RAM or from the buffer RAM
to the SIE. Before the UBM transfers data to the SIE, the CPU or the USB DMA
controller must put the data into the buffer RAM. When the CPU or the
USB DMA controller is ready to move data to the DSP memory, it must wait
for the UBM to move the data from the SIE to the buffer RAM.

Figure 3. Path for Data Transferred Between the Host and the DSP Memory

USB
DMA

CPU

DSP
memory

Buffer
RAM

UBM

C55x DSP

SIE

USB device

USB module

Controller

USB host

2.4 Clock Generation for the USB Module

As shown in Figure 4, the USB module has a dedicated clock generator that
is independent of the DSP clock generator. Both generators receive their input
from the CLKIN pin. The DSP clock generator supplies the CPU clock that is
used by the CPU and most of the other modules inside the DSP. The USB clock
generator supplies the clock needed to operate the USB module.

Note:

The USB module requires a 48-MHz clock. The clock on the CLKIN pin may
vary, but the USB clock generator must be programmed to produce a
48-MHz clock.

Introduction to the USB Module

Universal Serial Bus (USB) Module24 SPRU596A

Figure 4. Clock Generation for the USB Module

C55x DSP

generator
DSP clock CPU clock

Input clock
on CLKIN pin

generator
USB clock USB module clock

modules
CPU, other

module
USB

48 MHz

2.4.1 USB Clock Generator on TMS320VC5509 Devices Versus
TMS320VC5507/5509A Devices

The USB clock generator on TMS320VC5509 devices includes only a digital
phase-locked loop circuit (DPLL). On TMS320VC5507/5509A devices, the
USB clock generator includes both a DPLL and an analog phase-locked loop
circuit (APLL). The choice of DPLL or APLL is made with the USB PLL
selection register (USBPLLSEL), which is shown in Figure 5 and described in
Table 1. This register is at address 1E80h in the I/O space of a
TMS320VC5507/5509A device.

Write to the PLLSEL bit to indicate which PLL circuit is to drive the USB
module. Then poll the status bits, DPLLSTAT and APLLSTAT. When a stable
clock signal is available from the selected PLL, the corresponding status bit
is set and the other status bit is cleared.

At device power-up, the DPLL is selected by default. If software selects the
APLL but the APLLSTAT bit remains 0, the APLL is not providing a stable clock
signal and should be restarted. Until the APLL is ready, the DPLL is used.

Introduction to the USB Module

25Universal Serial Bus (USB) ModuleSPRU596A

Figure 5. USB PLL Selection Register (USBPLLSEL)

15 8

Reserved

R−0

7 3 2 1 0

Reserved DPLLSTAT APLLSTAT PLLSEL

R−0 R−1 R−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset

Table 1. Bits of the USB PLL Selection Register (USBPLLSEL)

Bit Field Value Description

15−3 Reserved These read-only bits return 0s when read.

2 DPLLSTAT DPLL status bit

0 The DPLL is not the clock source for USB module.

1 The DPLL is the clock source for the USB module.

1 APLLSTAT APLL status bit

0 The APLL is not the clock source for the USB module.

1 The APLL is the clock source for the USB module.

0 PLLSEL PLL selection bits

0 The DPLL is selected as the USB module clock source.

1 The APLL is selected as the USB module clock source.

Introduction to the USB Module

Universal Serial Bus (USB) Module26 SPRU596A

2.4.2 DPLL Operation

TMS320VC5509 devices have a DPLL only. On TMS320VC5507/5509A
devices, the DPLL is selected if PLLSEL = 0 in USBPLLSEL. The DPLL
functions like the DSP clock generator. To find details about the DSP clock
generator, see the TMS320C55x DSP Peripherals Overview Reference Guide
(literature number SPRU317).

The DPLL has two modes: the lock mode and the bypass mode. In the lock
mode, the input clock is multiplied and/or divided, and in the bypass mode, the
input clock is divided only. At device power-up, the bypass mode is selected.

The lock mode or bypass mode can be selected with the PLLENABLE bit of
the USB digital PLL control register (USBDPLL). This register, shown in
Figure 6 and described in Table 2, contains all the bits for controlling the DPLL.
USBDPLL has the same fields as the DSP clock mode register (CLKMD).
USBDPLL is at address 1E00h in the I/O space of the DSP.

Figure 6. USB Digital PLL Control Register (USBDPLL)

15 14 13 12 11

Reserved IAI IOB Reserved� PLLMULT

R−0 R/W−0 R/W−1 R/W−0 R/W−0

7 6 5 4 3 2 1 0

PLLMULT PLLDIV PLLENABLE BYPASSDIV BREAKLN LOCK

R/W−0 R/W−00 R/W−0 R/W−01 R−1 R−0

Legend: R = Read; W = Write; -n = Value after reset
� Always write 0 to this reserved bit.

Table 2. Bits of the USB Digital PLL Control Register (USBDPLL)

Bit Field Value Description

15 Reserved This read-only reserved bit returns 0 when read.

14 IAI Initialize after idle bit. IAI determines how the DPLL reacquires the
phase lock after the DPLL exits its idle mode (when the CLKGEN
idle domain is reactivated).

0 The DPLL does not restart the phase-locking sequence. Instead the
DPLL reacquires the lock using the same lock settings that were in
use just before the idle mode was entered.

1 The DPLL restarts the phase-locking sequence. This option is
recommended if the input clock has or may have changed while the
clock generator was idle.

Introduction to the USB Module

27Universal Serial Bus (USB) ModuleSPRU596A

Table 2. Bits of the USB Digital PLL Control Register (USBDPLL) (Continued)

Bit DescriptionValueField

13 IOB Initialize on break bit. IOB determines whether the DPLL initializes
the phase-locking sequence whenever the phase lock is broken.

If the DPLL indicates a break in the phase lock:

0 The DPLL is not interrupted. The DPLL stays in the lock mode, and
continues to output the current clock signal.

1 The DPLL switches to its bypass mode and restarts the
phase-locking sequence.

12 Reserved 0 Always write 0 to this reserved bit.

11−7 PLLMULT 2 to 31 PLL multiply value. When PLLENABLE = 1 and the DPLL is locked,
the input clock is multiplied by the unsigned integer in PLLMULT and
is divided according to the value in the PLLDIV bits. The options are
summarized in Table 3.

6−5 PLLDIV PLL divide value. When PLLENABLE = 1 and the DPLL is locked,
the input clock is multiplied by the unsigned integer in PLLMULT and
is divided according to the value in the PLLDIV bits. The options are
summarized in Table 3.

00b No division/divide by 1
The input frequency is not divided.

01b Divide by 2
The input frequency is divided by 2.

10b Divide by 3
The input frequency is divided by 3.

11b Divide by 4
The input frequency is divided by 4.

4 PLLENABLE PLL enable bit. Write to PLLENABLE to enable or disable phase
locking. When PLLENABLE is set, the DPLL initiates the
phase-locking sequence. When the DPLL acquires the phase lock,
the frequency of the DPLL output clock is determined by the
PLLMULT and PLLDIV bits.

0 Disable phase locking (enter the bypass mode).

1 Enable phase locking and, when the correct output clock signal is
generated, enter the lock mode.

Introduction to the USB Module

Universal Serial Bus (USB) Module28 SPRU596A

Table 2. Bits of the USB Digital PLL Control Register (USBDPLL) (Continued)

Bit DescriptionValueField

3−2 BYPASSDIV Bypass-mode divide value. In the bypass mode, BYPASSDIV
determines the frequency of the output clock signal. The options are
summarized in Table 3.

00b or
01b

No division/divide by 1
The frequency of the output clock signal is the same as the
frequency of the input clock signal.

10b Divide by 2
The frequency of the output clock signal is 1/2 the frequency of the
input clock signal.

11b Divide by 4
The frequency of the output clock signal is 1/4 the frequency of the
input clock signal.

1 BREAKLN Break-lock indicator. BREAKLN indicates whether the DPLL has
broken the phase lock. In addition, if you write to CLKMD,
BREAKLN is forced to 1.

0 The DPLL has broken the phase lock.

1 The phase lock is restored, or a write to CLKMD has occurred.

0 LOCK Lock-mode indicator. LOCK indicates whether the DPLL is in its lock
mode.

0 The DPLL is in the bypass mode. The output clock signal has the
frequency determined by the BYPASSDIV bits, or the DPLL is in the
process of getting a phase lock.

1 The DPLL is in the lock mode. The DPLL has a phase lock, and the
output clock has the frequency determined by the PLLMULT bits
and the PLLDIV bits.

Introduction to the USB Module

29Universal Serial Bus (USB) ModuleSPRU596A

Table 3. DPLL Options for the USB Module Clock Frequency

PLLENABLE BYPASSDIV� PLLDIV� PLLMULT� DPLL Option
USB Module
Clock Frequency�

0 0 or 1 X X Bypass mode;
divide by 1

Input clock frequency × 1/1

0 2 X X Bypass mode;
divide by 2

Input clock frequency × 1/2

0 3 X X Bypass mode;
divide by 4

Input clock frequency × 1/4

1 X 0 K = 2 to 31 Lock mode;
multiply by K

Input clock frequency × K/1

1 X 1 K = 2 to 31 Lock mode;
multiply by K/2

Input clock frequency × K/2

1 X 2 K = 2 to 31 Lock mode;
multiply by K/3

Input clock frequency × K/3

1 X 3 K = 2 to 31 Lock mode;
multiply by K/4

Input clock frequency × K/4

� X = don�t care
� The USB clock frequency must be 48 MHz for proper operation of the USB module.

Introduction to the USB Module

Universal Serial Bus (USB) Module30 SPRU596A

2.4.3 APLL Operation (TMS320VC5507/5509A Devices Only)

On TMS320VC5507/5509A devices, the APLL is selected if PLLSEL = 1 in
USBPLLSEL. The APLL has two modes: the lock mode and the bypass mode.
In the lock mode, the input clock is multiplied and/or divided, and in the bypass
mode, the input clock is divided only. At device power-up, the bypass mode is
selected.

To configure the APLL, use the USB analog PLL control register, USBAPLL
(see Figure 7 and Table 4). This register is at address 1F00h in the I/O space
of a TMS320VC5507/5509A device. The following paragraphs describe the
functionality provided by the bits in USBAPLL.

The MODE bit selects either the lock mode or the bypass mode. In the
lock mode, the APLL requires the use of an internal voltage-controlled
oscillator (VCO). The VCO is turned on by either the MODE bit or the ON bit,
and the VCO is turned off if both of these bits are 0.

The MULT field of USBAPLL selects a multiplication factor K. In the
bypass mode, K determines how the input clock (CLKIN) is divided to produce
the USB module clock. In the lock mode, K is used in conjunction with the
DIV bit to determine the relative frequency of the USB module clock. Table 15
summarizes all the options. Remember that the USB module requires a
frequency of 48 MHz.

The COUNT field is a down-counter used to track the APLL lock time. The
APLL requires approximately 350 µs to lock, and COUNT provides a means
to track the lock time in terms of the input clock (CLKIN). As soon as the lock
mode is turned on (that is, as soon as the MODE bit changes from 0 to 1), the
phase-locking sequence begins and COUNT decremented by 1 every
16 CLKIN cycles. When COUNT reaches 0, the STAT bit is set. To make sure
the countdown time matches the lock time, use the following equation when
loading COUNT:

COUNT � � Lock time
16 � CLKIN period

�� 1

Introduction to the USB Module

31Universal Serial Bus (USB) ModuleSPRU596A

Figure 7. USB Analog PLL Control Register (USBAPLL)

15 12 11 10

MULT DIV COUNT

R/W−0 R/W−0 R/W−0

3 2 1 0

COUNT ON MODE STAT

R/W−0 R/W−0 R/W−0 R−0

Legend: R = Read; W = Write; -n = Value after reset
� This reserved bit must be kept 0 for proper operation of the USB clock generator.

Table 4. Bits of the USB Analog PLL Control Register (USBAPLL)

Bit Field Value Description

15−12 MULT PLL multiply value. MULT + 1 is the multiply factor K. Table 5
shows how this factor affects the operation of the APLL.

0000b K= 1

0001b K = 2

0010b K = 3

0011b K = 4

0100b K = 5

0101b K = 6

0110b K = 7

0111b K = 8

1000b K = 9

1001b K = 10

1010b K= 11

1011b K = 12

1100b K = 13

1101b K= 14

1110b K = 15

1111b K = 16

Introduction to the USB Module

Universal Serial Bus (USB) Module32 SPRU596A

Table 4. Bits of the USB Analog PLL Control Register (USBAPLL) (Continued)

Bit DescriptionValueField

11 DIV 0 or 1 PLL divide value. Table 5 shows how this value affects the
operation of the APLL in the lock mode. This value is a don�t care
in the bypass mode.

10−3 COUNT 0 to 255 PLL lock counter bits. COUNT offers the ability to track the APLL
lock time, which is approximately 350 µs. Before switching to the
lock mode, load COUNT using the following equation:

COUNT = [Lock time / (16 x CLKIN period)] −1

As soon as the lock mode is selected (that is, when the MODE bit
changes from 0 to 1), COUNT is decremented by 1 every
16 CLKIN cycles. When COUNT reaches 0, the STAT bit is set.

2 ON PLL VCO on bit. This bit can be used to enable the internal
voltage-control oscillator (VCO).

0 If the MODE bit is also 0, writing 0 to ON turns the VCO off.

1 Writing 1 to ON turns the VCO on if it is not already running due
to the MODE bit.

1 MODE Mode selection bit

0 Bypass mode. Writing 0 to MODE selects the bypass mode.

1 Lock mode. Writing 1 to MODE selects the lock mode and also
turns the VCO on if it is not already running due to the ON bit.

0 STAT PLL lock status bit. If COUNT has been loaded properly, STAT = 1
indicates that enough time has passed for the APLL to achieve a
phase lock.

0 COUNT has not been decremented to 0.

1 COUNT has been decremented to 0.

Introduction to the USB Module

33Universal Serial Bus (USB) ModuleSPRU596A

Table 5. APLL Options for the USB Module Clock Frequency

MODE DIV K� APLL Option USB Module Clock Frequency�

0 0 or 1 1 to 15 Bypass mode; divide by 2 Input clock frequency × 1/2

0 0 or 1 16 Bypass mode; divide by 4 Input clock frequency × 1/4

1 0 1 to 15 Lock mode; multiply by K Input clock frequency × K/1

1 0 16 Lock mode; multiply by 1 Input clock frequency × 1/1

1 1 odd Lock mode; multiply by K/2 Input clock frequency × K/2

1 1 even Lock mode; multiply by (K−1)/4 Input clock frequency × (K−1)/4

� K = MULT + 1
� The USB clock frequency must be 48 MHz for proper operation of the USB module.

2.4.4 Idle Mode Considerations

Idling the USB module does not idle the USB clock generator. Doing this simply
prevents the USB module clock signal from driving the USB module.

Both the DSP clock generator and the USB clock generator are part of the
CLKGEN idle domain. If the IDLE instruction deactivates the CLKGEN
domain, both clock generators stop running.

USB Buffer Manager (UBM)

Universal Serial Bus (USB) Module34 SPRU596A

3 USB Buffer Manager (UBM)

When data is to be moved to or from the buffer RAM, the UBM accesses one
of the following endpoint buffers in the buffer RAM:

Buffers For Transfers
To DSP Memory

Buffers For Transfers
From DSP Memory

Control endpoint buffers

OUT0 buffer IN0 buffer

General-purpose endpoint buffers

OUT1 buffer (X or Y) IN1 buffer (X or Y)

OUT2 buffer (X or Y) IN2 buffer (X or Y)

OUT3 buffer (X or Y) IN3 buffer (X or Y)

OUT4 buffer (X or Y) IN4 buffer (X or Y)

OUT5 buffer (X or Y) IN5 buffer (X or Y)

OUT6 buffer (X or Y) IN6 buffer (X or Y)

OUT7 buffer (X or Y) IN7 buffer (X or Y)

Each general-purpose endpoint can be configured to have a single buffer (X)
or a double buffer (two buffers, X and Y). This is controlled by the double buffer
mode (DBUF) bit in USBxCNFn. If there are two buffers, the UBM keeps track
of which buffer to use. If the endpoint is in the non-isochronous mode, the UBM
uses the X buffer for a DATA0 packet and the Y buffer for a DATA1 packet.

Each of the endpoint buffers is associated with a programmable count register
of the following format:

7 6 0

NAK CT (bytes)

The NAK bit corresponds to the negative acknowledgement (NAK) of the USB
protocol. If the NAK bit is set (NAK = 1), the SIE sends a NAK in response to
a host request to that particular endpoint. The UBM does not access the buffer
until NAK is cleared (NAK = 0).

USB Buffer Manager (UBM)

35Universal Serial Bus (USB) ModuleSPRU596A

The CT (count) field indicates the number of bytes in a transfer. For an
IN transfer, the CPU or the USB DMA controller must initialize the CT field and
clear the NAK bit. For an OUT transfer, the UBM updates the CT field (after
moving a new data packet from the SIE to the endpoint buffer) and sets the
NAK bit.

Note:

In isochronous transfers, the count can be as large as 1023 bytes, requiring
a 10-bit CT field. Thus, for isochronous transfers, the count value is extended
by three high bits from another register. Details can be found in section 7.3.4
(page 96).

Figure 8 summarizes the role of the NAK bit at an OUT endpoint. When an
OUT packet is received by the serial interface engine (SIE), the UBM writes
the incoming data to the appropriate endpoint buffer and sets the NAK bit to
prevent the host from overwriting the packet before it is read by the CPU or the
USB DMA controller. After the CPU or the DMA controller clears the NAK bit,
the UBM can write to the buffer again.

Figure 8. Role of a NAK Bit in USB Activity at an OUT Endpoint

OUT token received

NAK=0
?

No

Yes

The UBM waits for the CPU
or the USB DMA controller
to clear the NAK bit of the

UBM transfers data from
SIE to endpoint buffer

UBM sets NAK
(NAK=1)

endpoint count register.

SIE responds to host with negative
acknowledgement (NAK)

End

USB Buffer Manager (UBM)

Universal Serial Bus (USB) Module36 SPRU596A

Figure 9 summarizes the role of the NAK bit at an IN endpoint. When an IN
token is received, the UBM transfers data from the appropriate endpoint buffer
to the SIE and sets the NAK bit so that the host will not receive the same packet
again. After the CPU or the USB DMA controller loads a new packet into the
endpoint buffer and clears the NAK bit, the UBM can access the buffer again.

Figure 9. Role of a NAK Bit in USB Activity at an IN Endpoint

End

NAK=0
?

No

Yes

The UBM waits for the CPU
or the USB DMA controller
to clear the NAK bit of the

UBM transfers data from
endpoint buffer to SIE

UBM sets NAK
(NAK=1)

endpoint count register.

SIE responds to host with negative
acknowledgement (NAK)

IN token received

USB DMA Controller

37Universal Serial Bus (USB) ModuleSPRU596A

4 USB DMA Controller
The USB module contains a dedicated DMA controller that can transfer data
between the DSP memory and the data buffers of the general-purpose
endpoints (OUT1−OUT7 and IN1−IN7). The USB DMA controller cannot
access the control endpoints (OUT0 and IN0).

4.1 Advantage of Using the USB DMA Controller

The USB DMA controller transfers data between the endpoint buffers and the
DSP memory with minimal CPU involvement. The CPU sets up the DMA
channel for data transfers. The CPU can continue with other tasks while the
DMA controller moves the data. The DMA controller notifies the CPU of the
transfer status via the GO and RLD status flags and USB DMA interrupts. For
details, see section 5.3 on page 70.

4.2 Things To Consider Before Using the USB DMA Controller

Keep the following facts in mind when you use the USB DMA controller:

� Each general-purpose endpoint must be in the double-buffer mode
(DBUF = 1 in each of the registers USBOCNF1−USBOCNF7 and
USBICNF1−USBICNF7). The USB DMA controller assumes there an
X buffer and a Y buffer for each general-purpose endpoint, and it accesses
the buffers alternately, beginning with the X buffer.

� The USB DMA controller accesses the DSP memory via the auxiliary port
of the DSP DMA controller. This auxiliary port is also used by the host port
interface (HPI). The USB module has the higher priority and thus can
delay HPI memory accesses.

� The DSP DMA controller must share the external memory interface
(EMIF) with other parts of the DSP. The EMIF handles requests from
throughout the DSP according to a preset priority ranking. When the
USB DMA controller must access external memory, the DSP DMA
controller sends a request to the EMIF and waits to be serviced.

USB DMA Controller

Universal Serial Bus (USB) Module38 SPRU596A

If the USB DMA controller is not used:

� Make sure the software does not write to the DMA control registers
(USBODCTL1−USBODCTL7 and USBIDCTL1−USBIDCTL7). Writing 1
to the GO bit of any DMA control register initiates a DMA transfer in the
controller. In addition, if the controller finishes a DMA transfer and finds
that the RLD bit is 1, the controller performs another transfer.

� Do not enable RLD and GO interrupt requests in the registers USBODIE
and USBIDIE.

4.3 Interaction Between the CPU and the USB DMA Controller

Table 6 shows how the CPU and the USB DMA controller interact.
Figure 10 (a) shows how DMA activity is affected by the GO and RLD bits set
by the CPU and how it is affected by the NAK bit in an endpoint buffer count
register. Figure 10 (b) shows how the CPU (via your code) can respond to GO
and RLD interrupts from the DMA controller.

After a DMA transfer, the GO bit of USBxDCTLn is cleared if the RLD bit of
USBxDCTLn is 0. If RLD is 1, and neither OVF nor STP is set in USBxDCTLn,
the controller performs a DMA reload operation (see section 4.5 on page 42):
The contents of the primary address and size registers are swapped with the
contents of the reload address and size registers. After a reload operation, the
controller automatically starts a new DMA transfer.

USB DMA Controller

39Universal Serial Bus (USB) ModuleSPRU596A

Table 6. DMA Transfers

Action of the CPU (DSP Code) Action of the USB DMA Controller

Initialize the DMA registers.

(Each general-purpose endpoint has eight DMA
registers; see section 7.2 on page 78).

The USB DMA controller behaves according to the
contents of the DMA registers.

Issue a GO command (set the GO bit).

The GO bit is in the endpoint DMA control register
(USBODCTLn or USBIDCTLn). Before initiating a new
transfer, poll the GO bit to make sure the previous
transfer (or series of transfers) is complete (GO = 0).

When the CPU sets the GO bit, the controller begins
polling the NAK bit in the X-/Y-buffer count register.
When NAK = 1, the controller begins the DMA
transfer, unless the endpoint is in the isochronous
mode (ISO = 1) . When ISO = 1, the controller also
waits for a start-of-frame packet (SOF) on the bus.

Set or clear the RLD (reload) bit as desired.

The RLD bit is in the endpoint DMA control register. Set
RLD if you want the controller to begin another transfer
after the current transfer is complete. Make sure the
reload address and size registers are initialized first.

Once a DMA transfer is complete, the controller
checks the RLD bit. If RLD = 0, the controller stops,
clears GO, and waits for the CPU to set GO again. If
RLD = 1, the controller performs a DMA reload
operation, clears RLD, and begins another transfer (if
NAK = 1).

Issue a stop command (optional).

To stop the controller before it would normally stop
itself, set the STP bit (STP = 1) in the DMA control
register for the endpoint.

The controller normally stops when it has completed a
transfer and the RLD bit is 0. However, if the CPU sets
the STP bit for the endpoint, the controller stops its
activity on the next packet boundary or at the end of the
current DMA transfer, whichever happens first. As it
stops, the controller clears the STP and GO bits.

Enable/disable interrupts using the DMA GO and RLD
interrupt enable registers.

If an interrupt is enabled, it is passed to the CPU as a
USB interrupt. The interrupt service routine (ISR) can
read USBINTSRC (see section 7.5.1 on page 106) to
determine the interrupt source. Then the ISR can
execute the appropriate subroutine.

When the controller completes a transfer and RLD = 0,
the controller clears the GO bit and sets the GO
interrupt flag. The RLD interrupt flag is set when the
controller completes a reload operation and clears the
RLD bit. When an interrupt flag is set, the
corresponding interrupt (if enabled) is sent to the CPU.
For information about the GO and RLD flags and
interrupts, see section 5.3 on page 70.

Read status information.

To monitor the activity of the controller, read the status
bits in the DMA control register and the flag bits in the
interrupt flag registers.

The USB DMA controller modifies bits in the DMA
control register and in the interrupt flag registers to
notify the CPU of specific actions or errors.

USB DMA Controller

Universal Serial Bus (USB) Module40 SPRU596A

Figure 10. Activity for DMA Transfers

(a) USB DMA Controller Execution Flow (at an individual endpoint)

Start

GO=1
?

No

Yes

ISO=1
?

No

Yes

The DMA controller waits
for the CPU to set the
GO bit.

The DMA controller
waits for the UBM to
set the NAK bit of the
endpoint buffer (X or Y).

DMA controller transfers
data between DSP memory

and endpoint buffer

DMA controller clears NAK
(NAK=0)

?
RLD=1No Yes

DMA controller
clears GO (GO=0)
and notifies CPU

DMA controller
swaps contents of

reload registers and

Note: The CPU can set
the RLD bit at this point
to enable another
reload operation.

DMA controller
clears RLD (RLD=0)

and notifies CPU

NAK = 1
?

No

detected
?

SOF NoYes

Yes

If the endpoint is in
the isochronous mode
(ISO = 1), the DMA
controller waits until a
start of frame packet

with flag bit and
(if enabled) interrupt

with flag bit and
(if enabled) interruptprimary registers

(SOF) is detected on
the bus.

USB DMA Controller

41Universal Serial Bus (USB) ModuleSPRU596A

Figure 10. Activity for DMA Transfers (Continued)

(b) CPU Code Execution Flow (at an individual endpoint)

Start

DMA
interrupt
received

?

Type
of

interrupt
?

desired
?

Another
reload

RLD

New

desired
?

transfer

No

GO

No

desired
?

Reload

Yes

No Yes

Yes

CPU loads
reload registers

(if required)

CPU sets RLD
(RLD=1)

registers, and sets
GO (GO = 1)

The CPU waits for a GO or RLD interrupt
from the USB DMA controller.

No

Yes

DMA transfer initiated

End

address and count
CPU programs

USB DMA Controller

Universal Serial Bus (USB) Module42 SPRU596A

4.4 Automatic Alternating Accesses of the X and Y Buffers

For non-isochronous USB transfers, the USB DMA controller automatically
tracks the data packet type and determines which of the endpoint�s buffers to
access, X or Y:

Data Packet Type USB DMA Controller Accesses ...

DATA0 X buffer

OUT transfer: The controller reads data from the X buffer.
IN transfer: The controller writes data to the X buffer.

DATA1 Y buffer

OUT transfer: The controller reads data from the Y buffer.
IN transfer: The controller writes data to the Y buffer.

For isochronous USB transfers, the USB DMA controller uses the X buffer first
and then alternates between the Y buffer and the X buffer.

4.5 DMA Reload Operation (Automatic Register Swapping)

For each endpoint n (n = 1, 2, 3, 4, 5, 6, or 7), the USB DMA controller has a
set of primary registers and a set of reload registers for the DMA transfer size
and the DSP memory address (see Table 7). The primary registers are used
for the current DMA transfer, and the reload registers are used to queue up an
address and size for the next transfer.

Table 7. Primary USB DMA Size and Address Registers and
the Corresponding Reload Registers

Endpoint Primary Register Register Contains ... Reload Register

Endpoint OUTn USBODSIZn
USBODADLn
USBODADHn

DMA transfer size in bytes
Low 16 bits of DSP memory address
High 8 bits of DSP memory address

USBODRSZn
USBODRALn
USBODRAHn

Endpoint INn USBIDSIZn
USBIDADLn
USBIDADHn

DMA transfer size in bytes
Low 16 bits of DSP memory address
High 8 bits of DSP memory address

USBIDRSZn
USBIDRALn
USBIDRAHn

As mentioned in Table 6, when the USB DMA controller completes a DMA
transfer, it checks the RLD (reload) bit of the appropriate DMA control register.
If RLD = 1, the controller performs a DMA reload operation: The controller
swaps the contents of the primary registers and the reload registers.
Example 1 shows a reload operation involving the endpoint OUT3 DMA
registers.

USB DMA Controller

43Universal Serial Bus (USB) ModuleSPRU596A

This register swapping saves CPU time if you repeatedly toggle between the
same two blocks of memory. Rather than putting new values into the reload
registers between transfers, you can set the reload registers once and initiate
a reload operation each time you want the controller to access the other block.

Example 1. DMA Reload Operation for Endpoint OUT3

USBODSIZ3 USBODRSZ3

USBODADL3 USBODRAL3

USBODADH3 USBODRAH3

Primary registers Reload registers

swap

swap

swap

4.6 Transfer Count Saved to DSP Memory for an OUT Transfer

For each new DMA transfer, the USB DMA controller ensures that the transfer
count for the endpoint starts at 0. When the user gives a GO command
(GO = 1), the controller clears the endpoint count register (USBxDCTn) before
moving the data. Likewise, after the controller completes a DMA reload
operation (see section 4.5), it clears the count register before beginning the
next DMA transfer.

At times, an OUT transfer may end with a short packet. If the USB DMA
controller performs a DMA reload operation and immediately starts the next
transfer, the count register is cleared before the user can read the number of
bytes in the packet. To prevent this loss of information, the controller copies
the byte count to the DSP memory after every read from an endpoint buffer.

Figure 11 shows the positions of the data and the byte count in DSP memory.
The start address is the address programmed in the primary address registers
(USBxDADHn and USBxDADLn). When the controller moves the data, it
begins writing at start address + 2. When all of the data has been moved, the
controller stores the 2-byte count at the start address.

USB DMA Controller

Universal Serial Bus (USB) Module44 SPRU596A

Figure 11. Storage of Transfer Count for an OUT Transfer

Data

Data

Data

Data

Endpoint buffer

Data

Data

Data

Data

DSP memory

Count

Count

After data stored,

start address + 2

Buffer in

Count (2 bytes)

USBxDCTn

byte count stored
at start address

Data stored at

To properly read data from an OUT transfer, follow these guidelines:

� When you define the size of the buffer in DSP memory, include an
additional two bytes for the DMA transfer count. Specifically, the buffer
must be two bytes larger than the size you programmed in USBxDSIZn.

� When you read the data, keep in mind that the data starts two bytes after
the start address you specified in USBxDADHn and USBxDADLn.

4.7 Configuring the USB DMA Controller

To configure an endpoint DMA transfer, use the instructions in the following
paragraphs. In the register and bit names that appear in these paragraphs, a
lowercase x can be O (for OUT) or I (for IN), and a lowercase n can be 1, 2,
3, 4, 5, 6, or 7 (indicating the endpoint number). For example, one of the
possible values for USBxDCTLn is USBIDCTL4, which represents the DMA
control register for endpoint IN4.

4.7.1 Set the Transfer Size

Register(Field) Value Description

USBxDSIZn(15−0) 1−65535 Number of bytes to be transferred

USBxDCTn(15−0) 1−65535 Number of bytes that have been transferred

For an endpoint n, you must tell the USB DMA controller how many bytes to
transfer between the DSP memory and the endpoint. Write the number of
bytes (up to 64K bytes) to USBxDSIZn.

USB DMA Controller

45Universal Serial Bus (USB) ModuleSPRU596A

The count value in USBxDCTn is cleared before each new DMA transfer and
is updated with the number of bytes transferred at the end of the transfer. If you
specified a DMA reload operation (see section 4.5 on page 42), the controller
automatically clears USBxDCTn before beginning the next DMA transfer.

4.7.2 Set the DSP Memory Address

Register(Field) Value Description

USBxDADHn(15−0) 0000h−00FFh High 8 bits of the DSP memory address

USBxDADLn(15−0) 0000h−FFFFh Low 16 bits of the DSP memory address

Because each general-purpose endpoint has a dedicated DMA channel, the
USB DMA controller knows the location of the endpoint buffer, but you must
tell the controller which address to use when accessing the DSP memory.

The address you specify must be a byte address with 24 bits. Load the 8 high
bits of the address into USBxDADHn. (Bits 15−8 of USBxDADHn must contain
0s). Load the 16 low bits of the address into USBxDADLn.

In addition, the address must be 16-bit aligned. Make sure the least
significant bit (LSB) of USBxDADLn is 0.

The control endpoints (OUT0 and IN0) do not have DMA channels.

4.7.3 Enable/Disable a DMA Reload Operation

Register(Field) Value Description

USBxDCTLn(RLD) 0 No pending DMA reload operation. (Writing 0 to RLD has no
effect.)

1 Enable DMA reload operation.

USBxDRSZn(15−0) 1−65535 Reload-size value for USBxDSIZn

USBxDRAHn(15−0) 0000h−00FFh Reload-address value for USBxDADHn

USBxDRALn(15−0) 0000h−FFFFh Reload-address value for USBxDADLn

The USB DMA controller checks the RLD bit at the end of each DMA transfer
to determine whether to stop or to begin another transfer. If you want the DMA
controller to begin another transfer as soon as the current one ends, initialize
the reload registers (USBxDRSZn, USBxDRAHn, and USBxDRALn) and then
set the RLD bit. When the DMA controller is done with the first transfer and it
finds RLD = 1, it performs a reload operation and begins the next transfer. If
the DMA controller is stopped (GO = 0), setting the RLD bit has no effect.

USB DMA Controller

Universal Serial Bus (USB) Module46 SPRU596A

Each time the DMA controller performs a reload operation, it clears the RLD
bit and notifies the CPU. To notify the CPU, the controller sets the endpoint�s
RLD interrupt flag bit in USBxDRIF. In addition, if the endpoint�s DMA interrupts
are enabled in USBxDIE, the DMA controller sends an interrupt request to the
CPU. To keep DMA transfers continuous, the CPU can set the RLD bit again
before the end of each DMA transfer (that is, before the GO bit is cleared to 0).

4.7.4 Enable/Disable DMA Interrupt Requests

Register(Field) Value Description

USBxDIE(xEn) 0 Disable DMA GO and RLD interrupt requests.

1 Enable DMA GO and RLD interrupt requests.

If DMA interrupts for an endpoint are enabled, the USB DMA controller can
generate a GO interrupt request each time it clears the GO bit of USBxDCTLn;
that is, it can notify the CPU that the controller has stopped. Similarly, the
controller can use a RLD interrupt request to notify the CPU that a DMA reload
operation is done (when the controller clears the RLD bit of USBxDCTLn).

Both of these DMA interrupt requests are enabled or disabled by a bit in one
of the DMA interrupt enable registers. The interrupt enable bits for endpoints
OUT1−OUT7 are in USBODIE; those for endpoints IN1−IN7 are in USBIDIE.
You enable GO and RLD interrupt requests for an endpoint by writing to the
corresponding interrupt enable bit. For example, to enable DMA interrupt
requests for endpoint IN6, write a 1 to USBIDIE(IE6). For endpoint OUT2, write
a 1 to USBODIE(OE2).

For more details about the DMA interrupt requests, see section 5.3 on
page 70.

4.7.5 Select the Endianness (Byte Orientation) of Data

Register(Field) Value Description

USBxDCTLn(END) 0 Do not change the order of the bytes in the next DMA
transfer.

1 Reverse the endianness of each word moved in the next
DMA transfer.

In the Big Endian orientation, the first byte is the most significant byte (MSByte)
of the word. In the Little Endian orientation, the first byte is the least significant
byte (LSByte). The C55x CPU assumes that data in memory has the Big
Endian orientation. When the UBM transfers data between the SIE and the
endpoint buffer, the UBM does not change the order of any data bytes.
However, by using the END bit, you can tell the USB DMA controller to swap
the byte orientation before writing to the endpoint buffer or after reading from
the endpoint buffer.

USB DMA Controller

47Universal Serial Bus (USB) ModuleSPRU596A

Figure 12 shows the effect of making END = 1 for an endpoint: The USB DMA
controller reverses the endianness of the words it transfers between the DSP
memory and the endpoint buffer. When END = 0 for an endpoint, the
USB DMA controller does not change the order of the bytes.

Figure 12. The Effect of END = 1 on USB DMA Transfers
(a) Even Number of Bytes Transferred

LSByte0

MSByte0

LSByte1

MSByte1

MSByte0

LSByte0

MSByte1

LSByte1

DMA transfer to DSP memory

Endpoint buffer DSP memory
(Little Endian) (Big Endian)

LSByte0

MSByte0

LSByte1

MSByte1

MSByte0

LSByte0

MSByte1

LSByte1

DMA transfer to endpoint buffer

Endpoint buffer DSP memory
(Little Endian) (Big Endian)

(b) Odd Number of Bytes Transferred

LSByte0

MSByte0

LSByte1

MSByte1

MSByte0

LSByte0

MSByte1

LSByte1

DMA transfer to DSP memory

Endpoint buffer DSP memory
(Little Endian) (Big Endian)

LSByte0

MSByte0

LSByte1

MSByte1

MSByte0

LSByte0

MSByte1

LSByte1

DMA transfer to endpoint buffer

Endpoint buffer DSP memory
(Little Endian) (Big Endian)

Odd byte XXh Odd byte XXh

LSByte1

XXh Odd byte XXh Odd byte

4.7.6 Enable/Disable Concatenation

Register(Field) Value Description

USBxDCTLn(CAT) 0 Disable concatenation of DMA transfers.

1 Enable concatenation of DMA transfers.

The USB DMA controller can combine multiple DMA transfers to service a
single USB transfer. For more details, see the description for the CAT bit in
section 7.2.1 (page 79).

USB DMA Controller

Universal Serial Bus (USB) Module48 SPRU596A

4.7.7 Select Whether a Short Packet is Required to End a USB Transfer

Register(Field) Value Description

USBxDCTLn(SHT) 0 Short packet not required or expected

1 Short packets required or expected

Typically, a USB transfer ends with a short packet, a packet that is shorter than
the maximum allowable size for the endpoint. If the last packet is of the
maximum packet size, the transmitter (host or slave device) can send one
more packet, of zero length, to indicate that there is no more data. The SHT bit
tells the USB DMA controller whether to wait for (or generate) a 0-byte packet
when the transfer ends with a maximum-size packet. For more details, see the
description for the SHT bit in section 7.2.1 (page 79).

4.7.8 Select Whether a Missing Packet is an Error During Isochronous Transfers

Register(Field) Value Description

USBxDCTLn(EM) 0 Do not halt the USB DMA controller in response to a missing
packet. Treat a missing packet as a 0-byte packet.

1 A missing packet is an error and stops the USB DMA
controller.

If the USB DMA controller is handling data packets for an isochronous
endpoint, this bit determines how the controller responds if no packet is
received in/transmitted from the endpoint buffer during the current USB frame.
For more details, see the description for the EM bit in section 7.2.1 (page 79).

4.8 Monitoring DMA Transfers
To monitor an endpoint DMA transfer, use the instructions in the following
paragraphs. In the register and bit names that appear in these paragraphs, a
lowercase x can be O (for OUT) or I (for IN), and a lowercase n can be 1, 2,
3, 4, 5, 6, or 7 (indicating the endpoint number). For example, one of the
possible values for USBxDCTLn is USBODCTL5, which represents the DMA
control register for endpoint OUT5.

4.8.1 Checking the Transfer Count

Register(Field) Value Description

USBxDCTn(15−0) 0−65535 Indicates how many bytes have been transferred

The USB DMA controller clears USBxDCTn before each new DMA transfer,
including those initiated by the DMA reload operations. USBxDCTn is updated
with the number of bytes transferred at the end of a transfer. You can read this
register to determine the number of bytes that have been moved at any point
during the DMA transfer.

USB DMA Controller

49Universal Serial Bus (USB) ModuleSPRU596A

4.8.2 Determining Whether a DMA Transfer is in Progress or is Done

Register(Field) Value Description

USBxDCTLn(GO) 0 The USB DMA controller is idling (ready for the next DMA
transfer).

1 A DMA transfer is in progress.

USBxDGIF(xEn) 0 No DMA GO interrupt is pending.

1 The USB DMA controller has completed the current DMA
transfers or series of transfers and has cleared the GO bit.
This event also generates a GO interrupt to the CPU if the
interrupt is enabled by USBxDIE(xEn).

When the CPU sets the GO bit, the DMA controller begins a DMA transfer. At
the end of the transfer, if the RLD bit is 1, the controller does not clear the
GO bit. Instead the controller performs a DMA reload operation (see section
4.5 on page 42) and begins a new transfer with the new address and size. By
using repeated reload operations, you can have the controller perform a series
of back-to-back transfers.

When the DMA controller completes a transfer and finds RLD = 0, it clears the
GO bit. In addition, it sets the endpoint�s GO flag in USBxDGIF and can
generate an interrupt request. For example, if the DMA controller is done at
endpoint OUT4, it sets the OE4 bit in USBODGIF. If the corresponding
interrupt request is enabled by the OE4 bit in USBODIE, an interrupt request
is sent to the CPU.

4.8.3 Determining Whether a DMA Reload Operation is in Progress or is Done

Register(Field) Value Description

USBxDCTLn(RLD) 0 USB DMA controller is done with the previously requested
reload operation.

1 USB DMA controller is waiting to complete a reload
operation.

USBxDRIF(xEn) 0 No DMA RLD interrupt is pending.

1 The USB DMA controller has completed the DMA reload
operation and has cleared RLD. This event also generates
a RLD interrupt to the CPU if the interrupt is enabled by
USBxDIE(xEn).

When the USB DMA controller completes a DMA transfer, it checks the
RLD bit. If RLD = 1, the DMA controller performs a reload operation. When the
reload operation is done, the controller clears the RLD bit. In addition, it sets
the endpoint�s RLD flag in USBxDRIF and can generate an interrupt request.

USB DMA Controller

Universal Serial Bus (USB) Module50 SPRU596A

For example, if the DMA controller completes a reload operation for endpoint
OUT4, it sets the OE4 bit in USBODRIF. If the corresponding interrupt request
is enabled by the OE4 bit in USBODIE, an interrupt request is sent to the CPU.

4.8.4 Checking for an Overflow or Underflow Condition

Register(Field) Value Description

USBxDCTLn(OVF) 0 No overflow/underflow detected

1 Overflow/underflow detected

Essentially, an overflow condition occurs when too many bytes are arriving in
an endpoint buffer, and an underflow condition occurs when not enough bytes
are available to be read from the endpoint buffer. For more details, see the
description for the OVF bit in section 7.2.1 (page 79).

4.8.5 Watching for a Missing Packet During an Isochronous Transfer

Register(Field) Value Description

USBxDCTLn(PM) 0 No missing packet.

1 Missing packet: A packet did not arrive in the previous USB
frame for the endpoint.

If the USB DMA controller is handling data packets for an isochronous
endpoint, you can program how the DMA controller should respond if no
packet is received in/transmitted from the endpoint buffer during the current
USB frame. If you want the controller to consider a missing packet an error
condition, set the EM bit in USBxDCTLn. If EM = 1, you can watch for missing
packets by monitoring the PM bit in USBxDCTLn. EM and PM are described
in section 7.2.1 (page 79).

USB DMA Controller

51Universal Serial Bus (USB) ModuleSPRU596A

4.9 USB DMA State Tables and State Diagrams

This section contains the following state tables to summarize the status of the
USB DMA controller under various conditions:

� Table 15: Non-isochronous IN DMA Transfer (page 80)

� Table 9: Non-isochronous OUT DMA Transfer (page 54)

� Table 10: Isochronous IN DMA Transfer (page 56)

� Table 11: Isochronous OUT DMA Transfer (page 60)

This section also includes the following state diagrams to support the
isochronous transfer state tables:

� Figure 13: Missing Packet Response for Isochronous IN DMA Transfer
(page 63)

� Figure 14: Missing Packet Response for Isochronous OUT DMA Transfer
(page 64)

U
S

B
 D

M
A

 C
ontroller

52
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 8. State Table: Non-Isochronous IN DMA Transfer

Description Initial State End State

DMA Transfer
State

Programmer
View

Bytes
Free in
Endpt
Buffer

Bytes in
DMA
Transfer

S
T
P

R
L
D

C
A
T

S
H
T

End of
Current
DMA
Transfer

Reload/
Swap

Reset
GO

Reset
STP

Update
DMA
Count

Send
Packet
(Clear
NAK)

DMA
Transfer
Activity

Normal transfer
in progress

> 0 > 0 X X X X In progress

Endpoint buffer
full

Stop requested 0 X 1 X X X Yes Yes Yes Idle

DMA transfer
completion

Stop requested > 0 0 1 X X X Yes Yes Yes Idle

Endpoint buffer
full, more data
remaining in DMA
transfer

0 > 0 0 X X X Yes Max Idle

DMA transfer
completion,

0 0 0 0 1 X Yes No Yes Yes Max Idle
completion,
endpoint buffer
full

1 Yes No

DMA transfer
completion,

0 0 0 0 0 0 Yes No Yes Yes Max Idle
completion,
endpoint buffer
full

1 Yes No

DMA transfer
completion,
endpoint buffer
full

Short packet
requested

0 0 0 X 0 1 Yes Max Idle until
current
packet
moves out,
then
prepare a
0-byte
packet

U
S

B
 D

M
A

 C
ontroller

53
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 8. State Table: Non-Isochronous IN DMA Transfer (Continued)

Description End StateInitial State

DMA Transfer
State

DMA
Transfer
Activity

Send
Packet
(Clear
NAK)

Update
DMA
Count

Reset
STP

Reset
GO

Reload/
Swap

End of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Bytes in
DMA
Transfer

Bytes
Free in
Endpt
Buffer

Programmer
View

DMA transfer
completion,

> 0 0 0 0 0 X Yes No Yes Yes Short Idle
completion,
endpoint buffer
not full

1 Yes No

DMA transfer
completion,
endpoint buffer
not full

CAT requested,
next buffer is
not ready yet

> 0 0 0 0 1 X Yes Yes Yes Pause

DMA transfer
completion,
endpoint buffer
not full

CAT requested,
next buffer is
ready

> 0 0 0 1 1 X Yes Yes Yes In progress

U
S

B
 D

M
A

 C
ontroller

54
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 9. State Table: Non-Isochronous OUT DMA Transfer

Description Initial State End State

DMA
Transfer
State

Programmer
View

Received
Packet
Size

Bytes
in
Endpt
Buffer

Bytes in
DMA
Transfer

S
T
P

R
L
D

C
A
T

S
H
T

End of
Current
DMA
Transfer

Reload/
Swap

Reset
GO

Reset
STP

Set
OVF

Update
DMA
Count

Clear
NAK
for
Next
Packet

DMA
Transfer
Activity

Normal
transfer in
progress

X > 0 > 0 X X X X In
progress

Packet
transfer
complete

Stop
requested

X 0 X 1 X X X Yes Yes Yes Yes Yes Idle

DMA transfer
complete

Stop
requested

X > 0 0 1 X X X Yes Yes Yes Idle

Packet
transfer
complete,
more data
remaining in
DMA transfer

Max 0 > 0 0 X X X Yes Yes Idle

Packet
transfer
complete,

Short 0 > 0 0 0 X X Yes No Yes Yes Yes Idle

complete,
more data
remaining in
DMA transfer

1 Yes No

DMA transfer
complete,

Max 0 0 0 0 X 0 Yes No Yes Yes Yes Idle
complete,
packet fits
exactly 1 Yes No

DMA transfer
complete,

Max 0 0 0 0 1 X Yes No Yes Yes Yes Idle
complete,
packet fits
exactly

1 Yes No

U
S

B
 D

M
A

 C
ontroller

55
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 9. State Table: Non-Isochronous OUT DMA Transfer (Continued)

Description End StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Clear
NAK
for
Next
Packet

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload/
Swap

End of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Bytes in
DMA
Transfer

Bytes
in
Endpt
Buffer

Received
Packet
Size

Programmer
View

DMA transfer
complete,
packet fits
exactly

Short
packet
requested

Max 0 0 0 X 0 1 Yes Yes Idle,
expecting
a 0−byte
packet

DMA transfer
complete,

Short
packet

Short 0 0 0 0 X X Yes No Yes Yes Yes Idle
complete,
packet fits
exactly

packet
requested 1 Yes No

DMA transfer
complete,
more data
remaining in
endpoint
buffer

Overflow
condition

X > 0 0 0 X 0 X Yes Yes Yes Yes Idle

DMA transfer
complete,
more data
remaining in
endpoint
buffer

CAT
requested,
next buffer
is not ready
yet

X > 0 0 0 0 1 X Yes Yes Yes Pause

DMA transfer
complete,
more data
remaining in
endpoint
buffer

CAT
requested,
next buffer
is ready

X > 0 0 0 1 1 X Yes Yes Yes In
progress

U
S

B
 D

M
A

 C
ontroller

56
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 10. State Table: Isochronous IN DMA Transfer

Description Initial State Final State

DMA
Transfer
State

Programmer
View

DMA
Transfer
Complete
Before
SOF

Bytes
Free
in
Endpt
Buffer

Bytes
in
DMA
Transfer

Missing
Packet
Error �

S
T
P

R
L
D

C
A
T

S
H
T

End
of
Current
DMA
Transfer

Reload
/Swap

Reset
GO

Reset
STP

Set
OVF

Update
DMA
Count

Send
Packet
(Clear
NAK)

DMA
Transfer
Activity

DMA
failed to
keep up
with USB

No X X X X X X X Yes Yes Yes Idle

Normal
transfer in
progress

Yes > 0 > 0 X X X X X In
progress

Endpoint
buffer full,
more
data
remaining
in DMA
transfer

Stop
requested

Yes 0 > 0 X 1 X X X Yes Yes Yes Yes Max Idle

DMA
transfer
complete,
endpoint
buffer is
not full

Stop
requested

Yes > 0 0 X 1 X X X Yes Yes Yes Idle

DMA
transfer
complete,
endpoint
buffer is
full

Stop
requested

Yes 0 0 X 1 X X X Yes Yes Yes Yes Max Idle

� Entries in this column are taken from the missing packet response state diagram of Figure 13 (page 63).

U
S

B
 D

M
A

 C
ontroller

57
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 10. State Table: Isochronous IN DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Send
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
/Swap

End
of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Missing
Packet
Error �

Bytes
in
DMA
Transfer

Bytes
Free
in
Endpt
Buffer

DMA
Transfer
Complete
Before
SOF

Programmer
View

Endpoint
buffer full,
more
data
remaining
in DMA
transfer,
host
missed
an IN
request
earlier

Yes 0 > 0 Yes 0 X X X Yes Yes No Max Idle

Endpoint
buffer full,
more
data
remaining
in DMA
transfer

Yes 0 > 0 No 0 X X X Yes Max Idle

DMA
transfer
complete,

Current
buffer is the
last of the

Yes > 0 0 No 0 0 0 X Yes No Yes Yes Non-
max
packet

Idle

complete,
endpoint
buffer is
not full

last of the
transfer

1 Yes No

packet

� Entries in this column are taken from the missing packet response state diagram of Figure 13 (page 63).

U
S

B
 D

M
A

 C
ontroller

58
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 10. State Table: Isochronous IN DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Send
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
/Swap

End
of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Missing
Packet
Error �

Bytes
in
DMA
Transfer

Bytes
Free
in
Endpt
Buffer

DMA
Transfer
Complete
Before
SOF

Programmer
View

DMA
transfer
complete,
endpoint
buffer is
not full

CAT
requested,
next buffer is
not ready yet
(underflow
condition)

Yes > 0 0 No 0 0 1 X Yes Yes Yes Yes Non-
max
packet

Idle

DMA
transfer
complete,
endpoint
buffer is
not full

CAT
requested,
next buffer is
ready

Yes > 0 0 No 0 1 1 X Yes Yes Start next
transfer,
fill up
rest of
endpoint
buffer

DMA
transfer
complete,
endpoint
buffer full,
missing
packet
error
seen

Yes 0 0 Yes 0 X X X Yes Yes Idle

DMA
transfer
complete

Yes 0 0 No 0 0 0 0 Yes No Yes Yes Max Idle

complete,
endpoint
buffer full

1 Yes No

� Entries in this column are taken from the missing packet response state diagram of Figure 13 (page 63).

U
S

B
 D

M
A

 C
ontroller

59
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 10. State Table: Isochronous IN DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Send
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
/Swap

End
of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Missing
Packet
Error �

Bytes
in
DMA
Transfer

Bytes
Free
in
Endpt
Buffer

DMA
Transfer
Complete
Before
SOF

Programmer
View

DMA
transfer
complete,
endpoint
buffer full

Short
(0-byte)
packet
requested

Yes 0 0 No 0 X 0 1 Yes Short
(zero)

Idle

DMA
transfer
complete

CAT
requested

Yes 0 0 No 0 0 1 X Yes No Yes Yes Max Idle

complete,
endpoint
buffer full

1 Yes No

� Entries in this column are taken from the missing packet response state diagram of Figure 13 (page 63).

U
S

B
 D

M
A

 C
ontroller

60
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 11. State Table: Isochronous OUT DMA Transfer

Description Initial State Final State

DMA
Transfer
State

Program-
mer View

DMA
Transfer
Complete
Before
SOF

Bytes
in
Endpt
Buffer

Bytes
in
DMA
Transfer

Normal,
Short,
Ignore,
Missing
Error �

S
T
P

R
L
D

C
A
T

S
H
T

End
of
Current
DMA
Transfer

Reload
/Swap

Reset
GO

Reset
STP

Set
OVF

Update
DMA
Count

Receive
Packet
(Clear
NAK)

DMA
Transfer
Activity

DMA
failed to
keep up
with USB

No X X X X X X X Yes Yes Yes Idle

Normal
transfer in
progress

Yes > 0 > 0 X X X X X In
progress

Endpoint
buffer is
empty

Stop
requested

Yes 0 X X 1 X X X Yes Yes Yes Yes Yes Idle

Endpoint
buffer

Yes 0 > 0 Normal 0 X X X Yes Yes Idle
buffer
empty,

 d t

Yes 0 > 0 Short 0 0 X X Yes No Yes Yes Yes Idlep y
more data
remaining 1 Yes Noremaining
in DMA
transfer

Yes 0 > 0 Ignore 0 X X X Yes Idle
transfer

Yes 0 > 0 Missing
Error

0 X X X Yes Yes Yes Yes Idle

� Entries in this column are taken from the missing packet response state diagram of Figure 14 (page 64).

U
S

B
 D

M
A

 C
ontroller

61
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 11. State Table: Isochronous OUT DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Receive
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
/Swap

End
of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Normal,
Short,
Ignore,
Missing
Error �

Bytes
in
DMA
Transfer

Bytes
in
Endpt
Buffer

DMA
Transfer
Complete
Before
SOF

Program-
mer View

DMA
transfer
complete

Stop
requested

Yes > 0 0 Normal 1 X X X Yes Yes Yes Yes Idle

complete,
more data
remaining
in the

Overflow
condition

Yes > 0 0 Normal 0 X 0 X Yes Yes Yes Yes Yes Idle

in the
endpoint
buffer.

CAT
requested,
next buffer
is not
ready yet
(overflow
condition)

Yes > 0 0 Normal 0 0 1 X Yes Yes Yes Yes Yes Idle

CAT
requested,
next buffer
is ready

Yes > 0 0 Normal 0 1 1 X Yes Yes Yes No In
progress

� Entries in this column are taken from the missing packet response state diagram of Figure 14 (page 64).

U
S

B
 D

M
A

 C
ontroller

62
U

niversal S
erial B

us (U
S

B
) M

odule
S

P
R

U
596A

Table 11. State Table: Isochronous OUT DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Receive
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
/Swap

End
of
Current
DMA
Transfer

S
H
T

C
A
T

R
L
D

S
T
P

Normal,
Short,
Ignore,
Missing
Error �

Bytes
in
DMA
Transfer

Bytes
in
Endpt
Buffer

DMA
Transfer
Complete
Before
SOF

Program-
mer View

DMA
transfer
complete

Stop
requested

Yes 0 0 X 1 X X X Yes Yes Yes Yes Yes Idle

complete,
endpoint
b ff i

CAT
requested

Yes 0 0 Normal 0 0 1 X Yes No Yes Yes Yes Idle
buffer is
empty

requested
1 Yes Nop y

Yes 0 0 Normal 0 0 0 0 Yes No Yes Yes Yes Idle

1 Yes No

Short
(0-byte)
packet
expected

Yes 0 0 Normal 0 X 0 1 Yes Yes Expect a
short
packet
next

DMA
expecting
a short

Yes 0 0 Missing
Error

0 X X X Yes Yes Yes Yes Idle

a short
(0-byte)

k t t
Yes 0 0 Short 0 0 X X Yes No Yes Yes Yes Idle

packet to
end the 1 Yes No

transfer
Yes 0 0 Ignore 0 X X X Yes In

progress

� Entries in this column are taken from the missing packet response state diagram of Figure 14 (page 64).

63Universal Serial Bus (USB) ModuleSPRU596A

Figure 13. State Diagram: Missing Packet Response for Isochronous IN DMA Transfer

PM = 0

Missing
packet
error

PM = 1

GO = 1

Normal
packet

EM = 0
Missing
packet

packet

EM = 0
Missing

packet
Normal

packet

EM = 1
Missing

packet
Missing
EM = 1

GO: Go command to USB DMA controller
PM: Previous packet missed
EM: Error if missing packet

Note: This figure supports Table 10 (page 56).

USB DMA Controller

Universal Serial Bus (USB) Module64 SPRU596A

Figure 14. State Diagram: Missing Packet Response for Isochronous OUT DMA Transfer

PM = 0
ZS = 1
Packet
ignored

ZS = 0
Normal
packet

PM = 0

0-byte
packet

Normal
packet

Short
packet,
transfer

terminated

0-byte
packet

EM = 0
Missing
packet

Missing
packet
error

EM = 1
Missing
packet

ZS = 0
Packet
ignored

PM = 1

PM = 1
ZS = 1

EM = 0
Missing
packet

GO = 1

packet
0-byte

packet

EM = 0
Missing

packet
0-byte

packet

EM = 1
Missing packet

EM = 1
Missing

Normal
packet

Normal
packet

Normal
packet

GO: Go command to USB DMA controller
PM: Previous packet missed
EM: Error if missing packet
ZS: 0-byte packet status

Note: This figure supports Table 11 (page 60).

USB DMA Controller

Interrupt Activity in the USB Module

65Universal Serial Bus (USB) ModuleSPRU596A

5 Interrupt Activity in the USB Module

The interrupt requests generated by the USB module can be grouped into the
following main categories:

� Bus interrupt requests (described in section 5.1)
� Endpoint interrupt requests (described in section 5.2)
� USB DMA interrupt requests (described in section 5.3)

As shown in Figure 15, all requests are multiplexed through an arbiter to a
single USB interrupt request to the CPU. When the arbiter receives multiple
interrupt requests at the same time, it services them one at a time according
to a predefined priority ranking. For the priority of each request, see the
description of the interrupt source register (USBINTSRC) in section 7.5.1
(page 106).

The USB interrupt is one of the maskable CPU interrupts. As with any
maskable interrupt request, if it is properly enabled in the CPU, the CPU
executes the corresponding interrupt service routine (ISR). The ISR that
services the interrupt can determine the interrupt source by reading the
interrupt source register (USBINTSRC), and can perform tasks accordingly.

After the CPU reads USBINTSRC, the following events occur:

1) The interrupt flag for the source interrupt is cleared in the corresponding
interrupt flag register. Exception: The STPOW and SETUP bits in USBIF
are not cleared when USBINTSRC is read. To clear one of these bits, the
CPU must write a 1 to the bit.

2) The arbiter determines which of the remaining interrupt requests has the
highest priority, writes the code for that interrupt to USBINTSRC, and
forwards the interrupt request to the CPU.

Figure 15. Possible Sources of a USB Interrupt Request

USB interrupt
request to CPU

Endpoint interrupt
requests

USB DMA interrupt
requests

Bus interrupt
requests

Arbiter

Interrupt Activity in the USB Module

Universal Serial Bus (USB) Module66 SPRU596A

5.1 Bus Interrupt Requests

The USB module can generate a number of interrupt requests that are related
to the activities on the Universal Serial Bus (see Table 12). As shown in
Figure 16, each of the interrupt requests has a flag bit in the USB interrupt flag
register (USBIF) and an enable bit in the USB interrupt enable register
(USBIE). When one of the specified events occurs, the corresponding flag bit
is set. If the corresponding enable bit is 0, the the interrupt request is blocked.
If the enable bit is 1, the request is forwarded to the CPU as a USB interrupt.

Table 12. Descriptions of the Bus Interrupt Requests

Bus
Interrupt Request Interrupt Source

RSTR A reset condition is detected on the bus.

SUSR A suspend condition is detected on the bus.

RESR Activity on the bus resumes, ending a suspend condition.

SETUP A setup packet arrived. (Setup data is stored in the setup
packet buffer.)

STPOW A setup overwrite has occurred; that is, a new setup packet
arrived before the previous setup packet was read from the
setup packet buffer.

SOF A start-of-frame (SOF) condition is detected on the bus.

PSOF The pre-SOF (PSOF) timer has finished counting down. If
you want an interrupt to occur n (1 to 255) clock cycles before
each SOF packet, load n into the pre-SOF interrupt timer
count register, USBPSOFTMR (see section 7.6.3 on
page 117). The counter runs at 750 kHz (12MHz/16).

Interrupt Activity in the USB Module

67Universal Serial Bus (USB) ModuleSPRU596A

Figure 16. Enable Paths for the Bus Interrupt Requests

USB interrupt
request to CPU

USBIE(RSTR)

USBIF(RSTR)

Endpoint interrupt requests

USB DMA interrupt requests

USBIE(SUSR)

USBIE(RESR)

USBIF(SUSR)

USBIF(RESR)

USBIF(PSOF)

USBIE(PSOF)

USBIF(SOF)

USBIE(SOF)

USBIE(STPOW)

USBIF(STPOW)

USBIF(SETUP)

USBIE(SETUP)

Flag bits Enable bits Bus interrupt requests

Arbiter

RSTR

SUSR

RESR

SETUP

STPOW

SOF

PSOF

Interrupt Activity in the USB Module

Universal Serial Bus (USB) Module68 SPRU596A

5.2 Endpoint Interrupt Requests

For each endpoint, the UBM can generate an interrupt request every time a
packet moves in or out of the endpoint buffer. As shown in Figure 17:

� Each OUT endpoint has a flag bit in the OUT endpoint interrupt flag
register (USBOEPIF) and an enable bit in the OUT endpoint interrupt
enable register (USBOEPIE).

� Each IN endpoint has a flag bit in the IN endpoint interrupt flag register
(USBIEPIF) and an enable bit in the IN endpoint interrupt enable register
(USBIEPIE).

� Endpoints IN0 and OUT0 each have an additional interrupt enable bit,
INTE, in the corresponding endpoint configuration register (USBICNF0 or
USBOCNF0, respectively).

� For endpoints IN1−IN7 and OUT1−OUT7, when the flag bit is set and the
enable bit is set, an interrupt request is passed to the CPU.

� For endpoint IN0 and OUT0, when the flag bit is set and both interrupt
enable bits are set, an interrupt request is passed to the CPU.

Software must set the enable bit(s), but the flag bit is set by the UBM when a
specific event occurs:

� For an OUT endpoint (data from host): When the UBM receives a valid
data packet, it writes the data to the appropriate OUT endpoint buffer. The
UBM then sets the NAK bit of the endpoint�s count register, to keep the
host from writing to the buffer before the data is read. The UBM also sets
the associated interrupt flag bit at this time.

� For an IN endpoint (data to host): When the USB module receives an
IN packet, the UBM moves the data out of the appropriate IN endpoint
buffer. The UBM then sets the NAK bit of the endpoint�s count register, to
keep the host from reading again before new data is placed in the buffer.
The UBM also sets the associated interrupt flag bit at this time.

Interrupt Activity in the USB Module

69Universal Serial Bus (USB) ModuleSPRU596A

Figure 17. Enable Paths for the Endpoint Interrupt Requests

OEPINT7

USB interrupt
request to CPU

USBOEPIE(OE1)

USBOEPIF(OE1)

USBOEPIE(OE7)

USBOEPIF(OE7)

OEPINT1

Bus interrupt requests

USB DMA interrupt requests

Endpoint interrupt requestsEnable bitsFlag bits

Arbiter

USBOEPIE(OE0)
USBOEPIF(OE0) OEPINT0

USBOCNF0(INTE)

IEPINT7

USBIEPIE(IE1)

USBIEPIF(IE1)

USBIEPIE(IE7)

USBIEPIF(IE7)

IEPINT1

USBIEPIE(IE0)
USBIEPIF(IE0) IEPINT0

USBICNF0(INTE)

Interrupt Activity in the USB Module

Universal Serial Bus (USB) Module70 SPRU596A

5.3 USB DMA Interrupt Requests

The USB module can generate an interrupt request every time the USB DMA
controller clears the GO bit or RLD (reload) bit for one of the general-purpose
endpoints (OUT1−OUT7 and IN1−IN7). As shown in Figure 18:

� Each OUT endpoint has:

� One flag bit in the OUT endpoint DMA GO interrupt flag register
(USBODGIF).

� Another flag bit in the OUT endpoint DMA RLD interrupt flag register
(USBODRIF).

� A single enable bit in the OUT endpoint DMA interrupt enable register
(USBODIE). This bit enables or disables both GO and RLD interrupt
requests.

� Each IN endpoint has:

� One flag bit in the IN endpoint DMA GO interrupt flag register
(USBIDGIF)

� Another flag bit in the IN endpoint DMA RLD interrupt flag register
(USBIDRIF)

� A single enable bit in the OUT endpoint DMA interrupt enable register
(USBIDIE). This bit enables or disables both GO and RLD interrupt
requests.

� For either type of endpoint, when either or both of the flag bits are set and
the enable bit is set, an interrupt request is passed to the CPU.

Software must set the enable bit, but the flag bit is set by the DMA controller.
Section 4.3 (page 38) explains how the GO and RLD bits control DMA activity.

Interrupt Activity in the USB Module

71Universal Serial Bus (USB) ModuleSPRU596A

Figure 18. Enable Paths for the USB DMA Interrupt Requests

IDGINT7

ODGINT1

USB interrupt
request to CPU

USBODIE(OE1)

USBODRIF(OE1)

USBODIE(OE7)

USBODRIF(OE7)

ODRINT1

ODRINT7

Bus interrupt requests
Endpoint interrupt requests

USBODGIF(OE1)

USBODGIF(OE7) ODGINT7

USBIDGIF(IE7)

USBIDGIF(IE1) IDGINT1

USBIDIE(IE7)

USBIDRIF(IE7)

USBIDRIF(IE1)

USBIDIE(IE1)

IDRINT7

IDRINT1

Flag bits Enable bits USB DMA interrupt requests

Arbiter

Power, Emulation, and Reset Considerations

Universal Serial Bus (USB) Module72 SPRU596A

6 Power, Emulation, and Reset Considerations
This section is a summary of the effects of power control, emulation, and reset
operations on the USB module.

6.1 Putting the USB Module into Its Idle Mode

The USB module is one of the peripheral devices in the peripherals idle
domain. If you want the USB module to become idle in response to an IDLE
instruction, make the following preparations:

1) Write 1 to the idle enable (IDLEEN) bit in USBIDLECTL (see section 7.6.8
on page 123). This tells the DSP to make the USB module idle when the
peripherals domain becomes idle.

2) Write a 1 to the PERI bit in ICR. This tells the DSP to make the peripherals
domain idle in response to an IDLE instruction.

6.2 USB Module Indirectly Affected by Certain Idle Configurations

As mentioned in section 6.1, the USB module can be affected by any idle
configuration that turns off the peripherals idle domain. In addition, activity in
the USB module can be affected by other idle configurations. For example:

� Idle configurations that turn off the CPU, preventing the CPU from
controlling and monitoring USB activity. (If enabled, an interrupt from the
USB module wakes the CPU.)

� Idle configurations that turn off the DSP DMA controller, preventing the
USB module from accessing the DSP memory

� Idle configurations that turn off the EMIF, preventing the DSP DMA
controller from accessing external memory

For more details about idle configurations.

6.3 USB Module During Emulation

During emulation, the USB module is not halted by a breakpoint. However, the
CPU is halted and, therefore, unable to respond to USB interrupts or other
requests.

In addition, the USB DMA controller cannot access memory if the DSP DMA
controller is programmed to halt when a breakpoint is encountered in the
debugger software. The FREE bit of DMAGCR controls the emulation
behavior of the DSP DMA controller. If FREE = 0 (the reset value), a
breakpoint suspends DMA transfers. If FREE = 1, DMA transfers are not
interrupted by a breakpoint.

Power, Emulation, and Reset Considerations

73Universal Serial Bus (USB) ModuleSPRU596A

6.4 Resetting the USB Module

There are three ways to reset the USB module:

� Write 1 to the USB software reset bit (SOFTRST) in the USB global control
register (USBGCTL). This resets the USB module but does not hold it in
reset. Immediately after the reset operation, the USB module is free to run.
The reset operation disconnects the USB module from the bus. Note: The
reset triggered by setting the SOFTRST bit does not affect the USB control
register (USBCTL).

� Write 0 to the USB reset bit (USBRST) in the USB idle control register
(USBIDLECTL). This resets the USB module and holds it in reset until you
write 1 to USBRST. During the reset operation, all of the USB module
registers assume their power-on default values (shown in the register
figures of section 7). One important effect is that the USB module is
disconnected from the bus (CONN = 0 in USBCTL). When USBRST = 0,
the CPU cannot access the USB module registers.

� Initiate a DSP reset by driving the RESET pin low. The entire DSP is reset
and is held in the reset state until you drive the pin high. When all DSP
registers assume their reset values, the USBRST bit is forced to 0, which
causes a USB reset.

USB Module Registers

Universal Serial Bus (USB) Module74 SPRU596A

7 USB Module Registers

This section covers the following topics

Topic See ...

High-level summary of the USB registers Section 7.1

DMA registers Section 7.2 on page 78

Definition registers for endpoints
IN1−IN7 and OUT1−OUT7

Section 7.3 on page 87

Definition registers for endpoints
IN0 and OUT0

Section 7.4 on page 103

Interrupt registers Section 7.5 on page 106

General control and status registers Section 7.6 on page 115

7.1 High-Level Summary of USB Module Registers

Table 13 lists the registers that are part of the USB module. These registers
are in the I/O space of the C55x DSP. There are additional registers that also
reside in I/O space but are not part of the USB module:

� USBDPLL. This register (available on TMS320VC5509 and
TMS320VC5507/5509A devices) controls the operation of the digital
phase-locked loop circuit (DPLL) of the USB clock generator. the
dedicated USB clock generator. Details of USBDPLL are in section 2.4.2
(page 26).

� USBAPLL. This register (available on TMS320VC5507/5509A devices
only) controls the operation of the analog phase-locked loop circuit (APLL)
of the USB clock generator. Details of USBAPLL are in section 2.4.3
(page 30).

� USBPLLSEL. This register (available on TMS320VC5507/5509A devices
only) is used to select between the DPLL and the APLL. Details of
USBPLLSEL are in section 2.4.1 (page 24).

� USBIDLECTL. This register (available on TMS320VC5509 and
TMS320VC5507/5509A devices) contains bits to put the USB module into
its idle mode or into reset. Details about USBIDLECTL are in section 7.6.8
(page 123).

USB Module Registers

75Universal Serial Bus (USB) ModuleSPRU596A

On each TMS320VC5509 or TMS320VC5507/5509A DSP, the set of USB
module registers may start at a different base address, but the individual
registers are at the same offset from the base address. To form a register�s
address, add the base address and the offset shown in the first column of
Table 13. For example, the base address on a TMS320VC5509 DSP is 5800h,
and the DMA registers for endpoint OUT1 begin at I/O address 5808h.

Table 13. High-Level Summary of the USB Module Registers

I/O Address
(Word Address)

Number
of

Registers
Width
(Bits) Description

Base address + 0000h 8 16 Reserved

Base address + 0008h 8 16 Endpoint OUT1 DMA register block

Base address + 0010h 8 16 Endpoint OUT2 DMA register block

Base address + 0018h 8 16 Endpoint OUT3 DMA register block

Base address + 0020h 8 16 Endpoint OUT4 DMA register block

Base address + 0028h 8 16 Endpoint OUT5 DMA register block

Base address + 0030h 8 16 Endpoint OUT6 DMA register block

Base address + 0038h 8 16 Endpoint OUT7 DMA register block

Base address + 0040h 8 16 Reserved

Base address + 0048h 8 16 Endpoint IN1 DMA register block

Base address + 0050h 8 16 Endpoint IN2 DMA register block

Base address + 0058h 8 16 Endpoint IN3 DMA register block

Base address + 0060h 8 16 Endpoint IN4 DMA register block

Base address + 0068h 8 16 Endpoint IN5 DMA register block

Base address + 0070h 8 16 Endpoint IN6 DMA register block

Base address + 0078h 8 16 Endpoint IN7 DMA register block

USB Module Registers

Universal Serial Bus (USB) Module76 SPRU596A

Table 13. High-Level Summary of the USB Module Registers (Continued)

I/O Address
(Word Address) Description

Width
(Bits)

Number
of

Registers

Base address + 0080h 3584 8 X and Y data buffers for endpoints
OUT1−OUT7 and IN1−IN7

Base address + 0E80h 64 8 Endpoint OUT0 data buffer

Base address + 0EC0h 64 8 Endpoint IN0 data buffer

Base address + 0F00h 8 8 Setup packet buffer

Base address + 0F08h 8 8 Endpoint OUT1 definition register block

Base address + 0F10h 8 8 Endpoint OUT2 definition register block

Base address + 0F18h 8 8 Endpoint OUT3 definition register block

Base address + 0F20h 8 8 Endpoint OUT4 definition register block

Base address + 0F28h 8 8 Endpoint OUT5 definition register block

Base address + 0F30h 8 8 Endpoint OUT6 definition register block

Base address + 0F38h 8 8 Endpoint OUT7 definition register block

Base address + 0F40h 8 8 Reserved

Base address + 0F48h 8 8 Endpoint IN1 definition register block

Base address + 0F50h 8 8 Endpoint IN2 definition register block

Base address + 0F58h 8 8 Endpoint IN3 definition register block

Base address + 0F60h 8 8 Endpoint IN4 definition register block

Base address + 0F68h 8 8 Endpoint IN5 definition register block

Base address + 0F70h 8 8 Endpoint IN6 definition register block

Base address + 0F78h 8 8 Endpoint IN7 definition register block

USB Module Registers

77Universal Serial Bus (USB) ModuleSPRU596A

Table 13. High-Level Summary of the USB Module Registers (Continued)

I/O Address
(Word Address) Description

Width
(Bits)

Number
of

Registers

Base address + 0F80h 1 8 Endpoint IN0 configuration register

Base address + 0F81h 1 8 Endpoint IN0 byte count register

Base address + 0F82h 1 8 Endpoint OUT0 configuration register

Base address + 0F83h 1 8 Endpoint OUT0 byte count register

Base address + 0F84h 13 8 Reserved

Base address + 0F91h 1 8 Global control register

Base address + 0F92h 1 8 Interrupt source register

Base address + 0F93h 1 8 Endpoint interrupt flag register for
IN endpoints

Base address + 0F94h 1 8 Endpoint interrupt enable register for
OUT endpoints

Base address + 0F95h 1 8 DMA RLD (reload) interrupt flag register for
IN endpoints

Base address + 0F96h 1 8 DMA RLD interrupt flag register for
OUT endpoints

Base address + 0F97h 1 8 DMA GO interrupt flag register for
IN endpoints

Base address + 0F98h 1 8 DMA GO interrupt flag register for
OUT endpoints

Base address + 0F99h 1 8 DMA interrupt enable register for
IN endpoints

Base address + 0F9Ah 1 8 DMA interrupt enable register for
OUT endpoints

Base address + 0F9Bh 1 8 Endpoint interrupt enable register for
IN endpoints

Base address + 0F9Ch 1 8 Endpoint interrupt enable register for
OUT endpoints

Base address + 0F9Dh 91 8 Reserved

USB Module Registers

Universal Serial Bus (USB) Module78 SPRU596A

Table 13. High-Level Summary of the USB Module Registers (Continued)

I/O Address
(Word Address) Description

Width
(Bits)

Number
of

Registers

Base address + 0FF8h 1 8 Frame number register, low part

Base address + 0FF9h 1 8 Frame number register, high part

Base address + 0FFAh 1 8 Pre-SOF interrupt timer register

Base address + 0FFBh 1 8 Reserved

Base address + 0FFCh 1 8 USB control register

Base address + 0FFDh 1 8 USB interrupt enable register

Base address + 0FFEh 1 8 USB interrupt flag register

Base address + 0FFFh 1 8 USB device address register

7.2 DMA Registers

Each of the general-purpose endpoints (OUT1−OUT7 and IN1−IN7) has a
dedicated DMA channel and a dedicated DMA register block for controlling
and monitoring transfer activities in that channel. This section describes the
function of each of the DMA registers, which are summarized in Table 14.

For each endpoint, the DMA register block starts at a different base address,
but the individual registers are at the same offset from the base address. The
first column of Table 14 shows the offsets.

USB Module Registers

79Universal Serial Bus (USB) ModuleSPRU596A

Table 14. USB DMA Registers for Endpoint INn or OUTn (n = 1, 2, 3, 4, 5, 6, or 7)

Offset From
Base Address USB DMA RegisterBase Address

of DMA Register
Block (Words) Endpoint INn Endpoint OUTn Description

0 USBIDCTLn USBODCTLn Control register

1 USBIDSIZn USBODSIZn Size register (transfer size in bytes)

2 USBIDADLn USBODADLn Address register, low part (byte address for
a DSP memory location)

3 USBIDADHn USBODADHn Address register, high part (byte address for
a DSP memory location)

4 USBIDCTn USBODCTn Byte count register (transfer count in bytes)

5 USBIDRSZn USBODRSZn Reload-size register (reload value for
USBxDSIZn, x = I or O)

6 USBIDRALn USBODRALn Reload-address register, low part (reload
value for USBxDADLn, x = I or O)

7 USBIDRAHn USBODRAHn Reload-address register, high part (reload
value for USBxDADHn, x = I or O)

7.2.1 USB DMA Control Register (USBxDCTLn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

This register controls the operation of the endpoint DMA channel. The control
bits in this register affect the DMA state changes described in section 4.9
(page 51).

The state of bits 4−6 is captured when a 1 is written to the GO bit and is not
captured during the DMA transfer. When the DMA transfer completes, if the
RLD bit is set, the state of bits 4−6 is captured again and a new transfer is
started. If the RLD bit is set when a DMA transfer ends, the captured
USBxDADLn, USBxDADHn, and USBxDSIZn values are swapped with the
values stored in USBxDRALn, USBxDRAHn, and USBxDRSZn, respectively.

USB Module Registers

Universal Serial Bus (USB) Module80 SPRU596A

Figure 19. USB DMA Control Register (USBxDCTLn)

15 9 8

Reserved PM

R−x R−x

7 6 5 4 3 2 1 0

EM SHT CAT END OVF RLD STP GO

R/W−x R/W−x R/W−x R/W−x R/W1C−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; -x = Value after reset is not
defined

Table 15. Bits of a USB DMA Control Register (USBxDCTLn)

Bit Field Value Description

15−9 Reserved 0 The read state of this field is undefined. It is recommended that you write
0s to these bit positions when writing to USBxDCTLn.

8 PM Previous packet missing. This status bit indicates that a packet did not
occur during the previous frame. The software should consider this bit as
a don�t care when EM=0.

0 A packet did occur on the previous frame for this endpoint.

1 A packet did not occur on the previous frame for this endpoint.

7 EM Error on missing packet. This control bit determines if, during an
isochronous transfer, missing a packet during a frame should be
considered an error condition.

0 Missing packets are treated the same as 0-byte packets.

1 Missing packets cause the GO bit to be cleared and the DMA to be halted.
The error status is shown in the PM bit. This event occurs only when PM
goes from 0 to 1.

USB Module Registers

81Universal Serial Bus (USB) ModuleSPRU596A

Table 15. Bits of a USB DMA Control Register (USBxDCTLn) (Continued)

Bit DescriptionValueField

6 SHT Short packet control. This bit only takes effect on a start or reload
condition.

For IN transfers:

0 If the size of the last packet in the transfer matches the maximum packet
size, the DMA controller does not insert an additional, 0-byte packet.

1 If the size of the last packet in the transfer matches the maximum packet
size, the DMA inserts a zero-length (0-byte) packet to terminate the
transaction with a short packet. To insert a 0-byte packet, the DMA
controller clears the endpoint byte count register, which forces both the
byte count and the NAK bit to 0.

For OUT transfers:

0 If the size of the last packet in the transfer matches the maximum packet
size, the DMA controller does not wait for a 0-byte packet to indicate the
end of the transfer.

1 If the size of the last packet in the transfer matches the maximum packet
size, the DMA controller waits for an additional, 0-byte packet as an
indication of the end of the transfer. If the next packet is not a 0-byte
packet, the DMA controller ends the transfer and ignores the data in the
terminating packet.

5 CAT Concatenation control. This bit only takes effect on a start or reload
condition.

For IN transfers:

0 If the transfer size is not enough to fill a maximum-size packet, allow the
USB module to send out the data as a short packet.

1 Concatenate DMA transfers. If the transfer size is not enough to fill a
packet, then the DMA controller performs the next DMA transfer to fill the
rest of the packet before allowing the USB module to send the data out.

For OUT transfers:

0 If the packet size exceeds the number of bytes remaining in the
DMA transfer, an overflow is recorded in the OVF bit.

1 Concatenate DMA transfers. If the packet size exceeds the number of
bytes remaining in the DMA transfer, an overflow is not recorded. Instead,
the current position in the buffer is recorded. When the next DMA transfer
starts, the DMA controllers reads the rest of the data, beginning at the
recorded position.

USB Module Registers

Universal Serial Bus (USB) Module82 SPRU596A

Table 15. Bits of a USB DMA Control Register (USBxDCTLn) (Continued)

Bit DescriptionValueField

4 END Endianness (byte orientation). This bit only takes effect on a start or reload
condition.

0 Little Endian (first byte is least significant byte in word)

1 Big Endian (first byte is most significant byte in word)

3 OVF Overflow/underflow. For conditions that set this flag, see the state tables
in section 4.9 (page 51).

For isochronous IN transfers:

0 Read � No underflow condition

1 Read � Underflow condition
Write � Write 1 to clear this flag.

For isochronous and non-isochronous OUT transfers:

0 Read � No overflow condition

1 Read � Overflow condition
Write � Write 1 to clear this flag.

2 RLD Reload control. User writes a 1 to reload the address and size registers
from reload registers when there are no pending transfers. The current
address and size are automatically swapped with the reload address and
size

0 The DMA controller does not use the reload registers, and does not start
a new DMA transfer at the end of the current transfer.

1 The DMA controller swaps the contents of the primary and reload address
and size registers, and starts a new transfer at the end of the current
transfer.

1 STP Stop DMA transfer.

0 The DMA controller functions normally.

1 The DMA controller stops at the end of the current DMA transfer and does
not change the NAK bit. Because NAK is unchanged, the UBM does not
move data into or out of the endpoint buffer. Once the DMA transfer is
stopped, the GO and STP bits are cleared.

USB Module Registers

83Universal Serial Bus (USB) ModuleSPRU596A

Table 15. Bits of a USB DMA Control Register (USBxDCTLn) (Continued)

Bit DescriptionValueField

0 GO Start DMA transfer. When written with 1, this bit starts the DMA transfer
for the endpoint. Writes of 0 have no effect. GO is cleared when a DMA
transfer is no longer active.

0 The DMA controller is idling (the controller is available for a new transfer).

1 Read 1 − The DMA controller is performing a transfer.

Write 1 − The endpoint DMA transfer is started (STP bit must be 0).

7.2.2 USB DMA Address Registers (USBxDADHn and USBxDADLn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

The USB DMA controller handles transfers between an endpoint buffer and
the DSP memory. Because each of the USB DMA channels is dedicated to a
particular endpoint, the start address for the endpoint buffer is known.
Software needs to supply only a start address for the data buffer in the DSP
memory.

The start address must be a byte address. Load the high 8 bits of the byte
address to USBxDADHn and the low 16 bits to USBxDADLn. The DMA
controller concatenates the two values to form a 24-bit address:

DSP memory address = DADH:DADL

In addition the address must be 16-bit aligned. Make sure that the least
significant bit (LSB) is 0.

When moving data received during an OUT transfer, the DMA controller starts
from address (DADH:DADL) + 2 and typically continues through address
(DADH:DADL) + 2 + DSIZ, where DSIZ is the number of bytes to transfer. The
DMA controller may stop sooner if the transfer is otherwise terminated (for
example, by a stop command via the STP bit or by a short OUT packet). The
16 bit word at (DADH:DADL) is then updated with the count of bytes actually
transferred. The byte order of this word is architecture dependent and not
dependent on the state of the END bit.

For an IN transfer, the DMA controller starts at address (DADH:DADL) and
continues through address (DADH:DADL) + DSIZ.

USB Module Registers

Universal Serial Bus (USB) Module84 SPRU596A

Figure 20. USB DMA Address Registers (USBxDADLn and USBxDADHn)

USBxDADLn

15 0

DADL (byte address)

R/W−x

USBxDADHn

15 0

DADH (byte address)

R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined

Table 16. Bits of USB DMA Address Registers
(USBxDADLn and USBxDADHn)

Bit Field Value Description

USBxDADLn(15−0) DADL 0000h−FFFFh Low part of the DSP memory start address.
The start address must be 16-bit aligned;
therefore, make sure bit 0 of this register is 0.

USBxDADHn(15−0) DADH 0000h−00FFh High part of the DSP memory start address.
C55x DSP memory addresses have 24 bits;
therefore, load the 8 high bits of DADH with
0s.

7.2.3 USB DMA Size Register (USBxDSIZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

USBxDSIZn specifies the number of bytes for the DMA controller to transfer
in a single DMA transfer. During a DMA reload operation (see section 4.5 on
page 42), the content of USBxDSIZn is swapped with the content of
USBxDRSZn. USBxDRSZn is described in section 7.2.6 (page 87).

USB Module Registers

85Universal Serial Bus (USB) ModuleSPRU596A

Figure 21. USB DMA Size Register (USBxDSIZn)

15 0

DSIZ (bytes)

R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined

Table 17. Bits of a USB DMA Size Register (USBxDSIZn)

Bit Field Value Description

15−0 DSIZ 1−65535 Number of bytes for the DMA controller to transfer

7.2.4 USB DMA Count Register (USBxDCTn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

USBxDCTn counts up, to track the number of bytes that have been transferred
for endpoint OUTn or INn. The USB DMA controller automatically loads this
register with 0 before beginning each DMA transfer. This includes the transfer
initiated by a DMA reload operation.

Note:

When the USB DMA controller stores data from an OUT transfer, it also
stores USBxDCTn to the DSP memory (see section 4.6 on page 43).

Figure 22. USB DMA Count Register (USBxDCTn)

15 0

DCT (bytes)

R−x

Legend: R = Read; -x = Value after reset is not defined

Table 18. Bits of a USB DMA Count Register (USBxDCTn)

Bit Field Value Description

15−0 DCT 0−65535 Indicates the number of bytes that have been
transferred by the USB DMA controller

Note: Before starting each new DMA transfer, the
controller resets this register to 0.

USB Module Registers

Universal Serial Bus (USB) Module86 SPRU596A

7.2.5 USB DMA Reload-Address Registers (USBxDRAHn and USBxDRALn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

USBxDRALn specifies the low 16 bits of the reload address, and USBxDRAHn
specifies the high 8 bits of the reload address. If the RLD bit is set when the
current DMA transfer is completed, the contents of these reload registers are
swapped with the contents of their corresponding primary registers:

� The content of USBxDRALn is swapped with the content of USBxDADLn.
� The content of USBxDRAHn is swapped with the content of USBxDADHn.

This register swapping is part of the DMA reload operation described in
section 4.5 (page 42).

Figure 23. USB DMA Reload-Address Registers (USBxDRALn and USBxDRAHn)

USBxDRALn

15 0

DRAL (byte address)

R/W−x

USBxDRAHn

15 0

DRAH (byte address)

R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined

Table 19. Bits of USB DMA Reload-Address Registers
(USBxDRALn and USBxDRAHn)

Bit Field Value Description

USBxDRALn(15−0) DRAL 0000h−FFFFh Reload value for DADL

The addresses used by the USB DMA
controller must be 16-bit aligned; therefore,
make sure bit 0 of this register is 0.

USBxDRAHn(15−0) DRAH 0000h−00FFh Reload value for DADH

C55x DSP memory addresses have 24 bits;
therefore, load the 8 high bits of DRAH with 0s.

USB Module Registers

87Universal Serial Bus (USB) ModuleSPRU596A

7.2.6 USB DMA Reload-Size Register (USBxDRSZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

Specifies the reload size. If the RLD bit is set when the current DMA transfer
is completed, the content of USBxDRSZn is swapped with the content of
USBxDSIZn. This register swapping is part of the DMA reload operation
described in section 4.5 (page 42).

Figure 24. USB DMA Reload-Size Register (USBxDRSZn)

15 0

DRSZ (bytes)

R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined

Table 20. Bits of a USB DMA Reload-Size Register (USBxDRSZn)

Bit Field Value Description

15−0 DRSZ 1−65535 Reload value for DSIZ

7.3 Definition Registers for Endpoints IN1−IN7 and OUT1−OUT7

The general-purpose endpoints (IN1−IN7 and OUT1−OUT7) each have a
block of eight definition registers to define the endpoint characteristics.
Table 21 shows the definition registers available for OUT and IN endpoints. To
access a definition register, find the base address of the definition block and
add the offset given in the first column of Table 21. The actual addresses can
be found in the device-specific data manual.

The isochronous mode (ISO) bit of each endpoint configuration register affects
other fields in the endpoint configuration register and determines whether the
USB module uses the extension registers (USBISIZHn, USBOCTXHn, and
USBOCTYHn). Figure 25 shows the definition registers when endpoints are
used in the isochronous mode (ISO = 1). Figure 26 shows the definition
registers in the non-isochronous mode (ISO = 0).

USB Module Registers

Universal Serial Bus (USB) Module88 SPRU596A

Table 21. Definition Registers For Endpoint INn or OUTn
(n = 1, 2, 3, 4, 5, 6, or 7)

Offset From the
Definition Register Endpoint Definition RegisterDefinition Register

Block�s Base
Address (Words) Endpoint INn Endpoint OUTn Description

0 USBICNFn USBOCNFn Endpoint n configuration register

1 USBIBAXn USBOBAXn X-buffer base address register (bits 11−4
of a byte address)

2 USBICTXn USBOCTXn X-buffer count register (transfer count in
bytes)

3 USBISIZHn USBOCTXHn IN endpoint: X-/Y-buffer size extension
register (used for isochronous transfers
only)

OUT endpoint: X-buffer count extension
register (used for isochronous transfers
only)

4 USBISIZn USBOSIZn X-/Y-buffer size register (transfer size in
bytes)

5 USBIBAYn USBOBAYn Y-buffer base address register (bits 11−4 of
a byte address)

6 USBICTYn USBOCTYn Y-buffer count register (transfer count in
bytes)

7 Reserved USBOCTYHn IN endpoint: Not available for use

OUT endpoint: Y-buffer count extension
register (used for isochronous transfers
only)

USB Module Registers

89Universal Serial Bus (USB) ModuleSPRU596A

Figure 25. Endpoint Definition Registers for INn and OUTn in the Isochronous Mode

Endpoint INn, Isochronous Mode (ISO = 1 in USBICNFn)

Offset Register 7 6 5 3 2 0

0 USBICNFn UBME ISO = 1 CTXH CTYH

1 USBIBAXn BAX

2 USBICTXn NAK CTX

3 USBISIZHn Reserved� SIZH

4 USBISIZn �� SIZ

5 USBIBAYn BAY

6 USBICTYn NAK CTY

7 − Reserved�

Endpoint OUTn, Isochronous mode (ISO = 1 in USBOCNFn)

Offset Register 7 6 5 3 2 0

0 USBOCNFn UBME ISO = 1 Reserved� SIZH

1 USBOBAXn BAX

2 USBOCTXn NAK CTX

3 USBOCTXHn Reserved� CTXH

4 USBOSIZn �� SIZ

5 USBOBAYn BAY

6 USBOCTYn NAK CTY

7 USBOCTYHn Reserved� CTYH

� Write 0s to these reserved bits.
� Do not use this register location.

USB Module Registers

Universal Serial Bus (USB) Module90 SPRU596A

Figure 26. Endpoint Definition Registers for INn and OUTn in the Non-Isochronous Mode

Endpoint INn, Non-isochronous Mode (ISO = 0 in USBICNFn)

Offset Register 7 6 5 4 3 2 0

0 USBICNFn UBME ISO = 0 TOGGLE DBUF STALL Reserved�

1 USBIBAXn BAX

2 USBICTXn NAK CTX

3 − Reserved�

4 USBISIZn �� SIZ

5 USBIBAYn BAY

6 USBICTYn NAK CTY

7 − Reserved�

Endpoint OUTn, Non-isochronous mode (ISO = 0 in USBOCNFn)

Offset Register 7 6 5 4 3 2 0

0 USBOCNFn UBME ISO = 0 TOGGLE DBUF STALL Reserved�

1 USBOBAXn BAX

2 USBOCTXn NAK CTX

3 − Reserved�

4 USBOSIZn �� SIZ

5 USBOBAYn BAY

6 USBOCTYn NAK CTY

7 − Reserved�

� Write 0s to these reserved bits.
� Do not use these register locations.

USB Module Registers

91Universal Serial Bus (USB) ModuleSPRU596A

7.3.1 Endpoint Configuration Register for INn (USBICNFn)
(n = 1, 2, 3, 4, 5, 6, or 7)

As shown in Figure 27, the function of bits 5−0 of USBICNFn depend on
whether you have programmed the endpoint to operate in the
non-isochronous or isochronous mode. Table 22 describes the bits of
USBICNFn, taking into account the optional function of bits 5−0.

Figure 27. Endpoint Configuration Register for INn (USBICNFn)

USBICNFn in non-isochronous mode (ISO = 0)

7 6 5 4 3 2 0

UBME ISO TOGGLE DBUF STALL Reserved�

R/W-x R/W-x R/W-x R/W-x R/W-x R/W−x

USBICNFn in isochronous mode (ISO = 1)

7 6 5 3 2 0

UBME ISO CTXH CTYH

R/W-x R/W-x R/W-x R/W-x

Legend: R = Read; W = Write; -x = Value after reset is not defined
� Write 0s to these reserved bits.

Table 22. Bits of the Endpoint Configuration Register for INn (USBICNFn)

Bit Field Value Description

7 UBME UBM access enable

0 The UBM cannot access this endpoint (the endpoint is inactive).

1 The UBM can access this endpoint (the endpoint is active).

6 ISO Isochronous mode enable

0 Non-isochronous mode

1 Isochronous mode

Bits 5−0 in Non-Isochronous Mode (ISO = 0)

5 TOGGLE Endpoint data toggle. This bit reflects the data toggle sequence (see
section 1.2 on page 17). Note: You do not need to write to this bit; it
is maintained by the UBM.

0 The next data packet is DATA0.

1 The next data packet is DATA1.

USB Module Registers

Universal Serial Bus (USB) Module92 SPRU596A

Table 22. Bits of the Endpoint Configuration Register for INn (USBICNFn) (Continued)

Bit DescriptionValueField

4 DBUF Double buffer mode enable

Note: The USB DMA controller requires the double buffer mode. If the
DMA controller will be servicing the endpoint, make sure DBUF = 1
before you start the controller.

0 Single buffer used (X buffer only)

1 Double buffer mode. The USB DMA controller tracks the data toggle
sequence to determine the active buffer. For a DATA0 packet, the
controller uses the X buffer; for a DATA1 packet, the controller uses
the Y buffer.

3 STALL Endpoint stall. Set this bit to tell the USB host that the endpoint is
stalled.

0 No stall

1 Endpoint stalled. A STALL handshake is sent to the host in response
to host access requests until the STALL bit is cleared.

2−0 Reserved 0 Write 0s to these reserved bits.

Bits 5−0 in Isochronous Mode (ISO = 1)

5−3 CTXH 000b−111b X-buffer byte count high bits

2−0 CTYH 000b−111b Y-buffer byte count high bits

7.3.2 Endpoint Configuration Register for OUTn (USBOCNFn)
(n = 1, 2, 3, 4, 5, 6, or 7)

As shown in Figure 28, the function of bits 5−0 of USBOCNFn depend on
whether you have programmed the endpoint to operate in the
non-isochronous or isochronous mode. Table 23 describes the bits of
USBOCNFn, taking into account the optional function of bits 5−0.

USB Module Registers

93Universal Serial Bus (USB) ModuleSPRU596A

Figure 28. Endpoint Configuration Register for OUTn (USBOCNFn)

USBOCNFn in non-isochronous mode (ISO = 0)

7 6 5 4 3 2 0

UBME ISO TOGGLE DBUF STALL Reserved�

R/W-x R/W-x R/W-x R/W-x R/W-x R/W−x

USBOCNFn in isochronous mode (ISO = 1)

7 6 5 3 2 0

UBME ISO Reserved� SIZH

R/W-x R/W-x R/W-x R/W-x

Legend: R = Read; W = Write; -x = Value after reset is not defined
� Write 0s to these reserved bits.

Table 23. Bits of the Endpoint Configuration Register for OUTn
(USBOCNFn)

Bit Field Value Description

7 UBME UBM access enable

0 The UBM cannot access this endpoint (the endpoint is inactive).

1 The UBM can access this endpoint (the endpoint is active).

6 ISO Isochronous mode enable

0 Non-isochronous mode

1 Isochronous mode

Bits 5−0 in Non-Isochronous Mode (ISO = 0)

5 TOGGLE Endpoint data toggle. This bit reflects the data toggle sequence
(see section 1.2 on page 17). Note: You do not need to write to
this bit; it is maintained by the UBM.

0 The next data packet is DATA0.

1 The next data packet is DATA1.

USB Module Registers

Universal Serial Bus (USB) Module94 SPRU596A

Table 23. Bits of the Endpoint Configuration Register for OUTn
(USBOCNFn) (Continued)

Bit DescriptionValueField

4 DBUF Double buffer mode enable

Note: The USB DMA controller requires the double buffer mode.
If the DMA controller will be servicing the endpoint, make sure
DBUF = 1 before you start the controller.

0 Single buffer used (X buffer only)

1 Double buffer mode. The USB DMA controller tracks the data
toggle sequence to determine the active buffer. For a DATA0
packet, the controller uses the X buffer; for a DATA1 packet, the
controller uses the Y buffer.

3 STALL Endpoint stall. Set this bit to tell the USB host that the endpoint is
stalled.

0 No stall

1 Endpoint stalled. A STALL handshake is sent to the host in
response to host access requests until the STALL bit is cleared.

2−0 Reserved 0 Write 0s to these reserved bits.

Bits 5−0 in Isochronous Mode (ISO = 1)

5−3 Reserved 0 Write 0s to these reserved bits.

2−0 SIZH 000b−111b X-/Y-buffer size high bits

7.3.3 Endpoint Buffer Base Address Registers for INn or OUTn
(USBxBAXn, USBxBAYn) (x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

Each general-purpose endpoint has two buffer base address registers: one for
the X buffer and one for the Y buffer (see Figure 29 and Table 24). By writing
to one of these registers, you provide bits 11−4 of a 12-bit relative address. The
USB module adds 0s for the bits 3−0 of the relative address. The address is
relative to the start address of the USB module registers.

Consider Example 2, which follows Table 24. Rather than the absolute
address, you load the offset shifted right by 4 bits. The 4-bit shift is required
because the buffer base address registers must hold the 8 high bits. When the
USB module uses those 8 bits, it extends them with four least significant 0s.

USB Module Registers

95Universal Serial Bus (USB) ModuleSPRU596A

Figure 29. Endpoint Buffer Base Address Registers for INn or OUTn
(USBxBAXn and USBxBAYn)

USBxBAXn

7 0

BAX (bits 11−4 of address offset)

R/W−x

USBxBAYn

7 0

BAY (bits 11−4 of address offset)

R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined

Table 24. Bits of the Endpoint Buffer Base Address Registers for INn or OUTn
(USBxBAXn and USBxBAYn)

Bit Field Value Description

For endpoint INn:

USBIBAXn(7−0) BAX 00h−FFh Bits 11−4 of the address offset for the X-buffer base
address. Bits 3−0 are 0s. The X-buffer base
address is the base address of the USB module
registers plus this 12-bit offset.

USBIBAYn(7−0) BAY 00h−FFh Bits 11−4 of the address offset for the Y-buffer base
address. Bits 3−0 are 0s. The Y-buffer base
address is the base address of the USB module
registers plus this 12-bit offset.

For endpoint OUTn:

USBOBAXn(7−0) BAX 00h−FFh Bits 11−4 of the address offset for the X-buffer base
address. Bits 3−0 are 0s. The X-buffer base
address is the base address of the USB module
registers plus this 12-bit offset.

USBOBAYn(7−0) BAY 00h−FFh Bits 11−4 of the address offset for the Y-buffer base
address. Bits 3−0 are 0s. The Y-buffer base
address is the base address of the USB module
registers plus this 12-bit offset.

USB Module Registers

Universal Serial Bus (USB) Module96 SPRU596A

Example 2. Loading the Endpoint Buffer Base Addresses

Endpoint IN1 X buffer: Assigned to the 1st 64 bytes of the buffer RAM
Endpoint IN1 Y buffer: Assigned to the 2nd 64 bytes of the buffer RAM

Buffer I/O Address Seen by CPU
Value Loaded into Buffer
Base Address Register

X
+

USB module registers base address
Offset for top of buffer RAM (80h)

USBIBAX1 = (80 >>4)

Y
+

USB module registers base address
Offset for 64 bytes further (C0h)

USBIBAY1 = (C0 >>4)

7.3.4 Endpoint Buffer Count Registers for INn or OUTn (USBxCTXn, USBxCTYn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

Each general-purpose endpoint has two count registers (see Figure 30 and
Table 25): one for the X buffer and one for the Y buffer. The NAK bit
corresponds to the negative acknowledgement (NAK) of the USB protocol.
While the NAK bit is set (NAK = 1), the SIE sends a NAK in response to host
data requests at the endpoint. More details about the NAK bit are given in
section 3 (page 34).

Each buffer (X or Y) needs a count register to indicate how many bytes should
move out of the buffer (for an IN endpoint) or how many bytes have been
moved into the buffer (for an OUT endpoint). If the endpoint is in the
non-isochronous mode (ISO = 0), the CTX/CTY field is the full count register.
If the endpoint is in the isochronous mode (ISO = 1), the CTX/CTY field is the
7 low bits of a 10-bit count register. The 3 high bits come from another register,
as described in Table 25.

Figure 30. Endpoint Buffer Count Registers for INn or OUTn
(USBxCTXn and USBxCTYn)

USBxCTXn

7 6 0

NAK CTX (bytes)

R/W−x R/W−x

USBxCTYn

7 6 0

NAK CTY (bytes)

R/W−x R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined

USB Module Registers

97Universal Serial Bus (USB) ModuleSPRU596A

Table 25. Bits of the Endpoint Buffer Count Registers for INn or OUTn
(USBxCTXn and USBxCTYn)

Bit Field Value Description

7 NAK Negative acknowledgement

For endpoint INn:

0 Data in the endpoint buffer is ready for an IN transfer.

1 Data in the endpoint buffer is not ready. The SIE sends a NAK
in response to an IN token.

For endpoint OUTn:

0 The endpoint buffer is ready for an OUT transfer.

1 Either the endpoint buffer is not ready or it contains an unread
data packet from the previous transfer. The SIE sends a NAK
in response to an OUT token.

6−0 CTX/CTY Count bits for buffer b (b = X or Y).

In the non-isochronous mode:

0−64 For endpoint INn: When NAK = 0, this value indicates
the number of bytes to move out of buffer b in response to an
IN token.

For endpoint OUTn: This value is a running count of the
bytes that have been moved to buffer b.

Note: If CTb is programmed with a value greater than 64, the
results will be unpredictable.

In the isochronous mode:

000 0000b−
111 1111b

For endpoint INn: These bits are the 7 low bits of the 10-bit
byte count for buffer b. As shown in Figure 31, the three high
bits are taken from USBICNFn. Load these 10 bits with the
number of bytes that should be moved out of buffer b in
response to an IN token. When an IN token arrives and
NAK = 0, this number of bytes is sent to the host.

For endpoint OUTn: These bits are the seven low bits of the
10-bit byte counter for buffer b. As shown in Figure 32, the
three high bits are taken from USBOCTXHn or
USBOCTYHn. The 10-bit counter keeps a running count of
the bytes that have been received in buffer b.

USB Module Registers

Universal Serial Bus (USB) Module98 SPRU596A

Figure 31. Endpoint Extended Buffer Count Values for INn in the Isochronous Mode
(ISO = 1)

X-buffer count CTXCTXH

Y-buffer count CTYH

USBICTYn NAK

7

Endpoint INn

USBICNFn (ISO=1)

9 8 7

7

UBME

USBICTXn NAK

7

6 5 4

CTY

CTY

3 2 1 0

CTYHCTXH

6 5 4

6

ISO

45

3 2

3 2

6 5 4

CTX

3 2

1 0

1 0

1 0

Endpoint INn

USBICNFn (ISO=1)

9 8 7

UBME

7

6 5 4

CTXH

6 5 4

3 2

3 2

1 0

CTYH

1 0

ISO

USB Module Registers

99Universal Serial Bus (USB) ModuleSPRU596A

Figure 32. Endpoint Extended Buffer Count Values for OUTn in the Isochronous Mode
(ISO = 1)

9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 45 3 2 1 0

CTXHReserved

NAK CTX

CTXH CTX

USBOCTXHn

USBOCTXn

Endpoint OUTn
X-buffer count

9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 45 3 2 1 0

CTYHReserved

NAK CTY

CTYH CTY

USBOCTYHn

USBOCTYn

Endpoint OUTn
Y-buffer count

USB Module Registers

Universal Serial Bus (USB) Module100 SPRU596A

7.3.5 Endpoint X-/Y-Buffer Size Register for INn or OUTn (USBxSIZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

The SIZ field in USBxSIZn determines the maximum packet size: the number
of bytes the endpoint buffer can hold at one time. In the double buffer mode
(required for the USB DMA controller), the X buffer and the Y buffer have the
same size, which is defined by the SIZ field.

Figure 33. Endpoint X-/Y-Buffer Size Register for INn or OUTn (USBxSIZn)

7 6 0

Reserved� SIZ (bytes)

R/W−x R/W−x

Legend: R = Read; W = Write; -x = Value after reset is not defined
� Write 0 to this reserved bit.

Table 26. Bits of the Endpoint n X-/Y-Buffer Size Register for INn or OUTn
(USBxSIZn)

Bit Field Value Description

7 Reserved 0 Write 0 to this reserved bit.

6−0 SIZ X-/Y-buffer size

In the non-isochronous mode:

8, 16, 32,
or 64

The number of bytes in the buffer RAM allocated for the
X buffer. In the double buffer mode (DBUF = 1), the same
number of bytes is allocated for the Y buffer.

Note: If SIZ is programmed with a value greater than 64, the
results will be unpredictable.

In the isochronous mode:

000 0001b−
111 1111b

The seven low bits of the 10-bit buffer size. As shown in
Figure 34, the three high bits are taken from USBISIZHn for
an IN endpoint or from USBOCNFn for an OUT endpoint.
The 10-bit buffer size is used for the X buffer and, in the
double buffer mode, is also used for the Y buffer.

USB Module Registers

101Universal Serial Bus (USB) ModuleSPRU596A

Figure 34. Endpoint Extended Buffer Size Values for INn and OUTn in the Isochronous
Mode (ISO = 1)

9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 45 3 2 1 0

SIZHReserved

Res. SIZ

SIZH SIZ

USBISIZHn

USBISIZn

Endpoint INn
X-/Y-buffer size

9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 45 3 2 1 0

UBME SIZHReserved

Res. SIZ

SIZH SIZ

ISOUSBOCNFn (ISO=1)

USBOSIZn

Endpoint OUTn
X-/Y-buffer size

USB Module Registers

Universal Serial Bus (USB) Module102 SPRU596A

7.3.6 Endpoint Buffer Size and Count Extension Registers
(USBISIZHn, USBOCTXHn, and USBOCTYHn) (n = 1, 2, 3, 4, 5, 6, or 7)

These registers provide buffer size and count extensions for isochronous
transfers between the USB module and a host processor. Specifically:

� If endpoint INn operates in the isochronous mode (ISO = 1 in USBICNFn),
USBISIZHn supplies 3 high bits to extend the X-/Y-buffer size from a 7-bit
value (SIZ) to a 10-bit value (SIZH:SIZ). The formation of this extended
size value is shown in Figure 34 (page 101).

� If endpoint OUTn operates in the isochronous mode (ISO = 1 in
USBOCNFn):

� USBOCTXHn supplies 3 high bits to extend the X-buffer byte count
from a 7-bit value (CTX) to a 10-bit value (CTXH:CTX).

� USBOCTYHn supplies 3 high bits to extend the Y-buffer byte count
from a 7-bit value (CTY) to a 10-bit value (CTYH:CTY).

The formation of these extended count values is shown in Figure 32
(page 99).

Figure 35. Endpoint Buffer Size and Count Extension Registers
(USBISIZHn, USBOCTXHn, and USBOCTYHn)

USBISIZHn

7 3 2 0

Reserved� SIZH

R/W−x R/W-x

USBOCTXHn

7 3 2 0

Reserved� CTXH

R/W−x R/W-x

USBOCTYHn

7 3 2 0

Reserved� CTYH

R/W−x R/W-x

Legend: R = Read; W = Write; -x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

103Universal Serial Bus (USB) ModuleSPRU596A

Table 27. Bits of the Endpoint Buffer Size and Count Extension Registers
(USBISIZHn, USBOCTXHn, and USBOCTYHn)

Bit Field Value Description

USBISIZHn(7−3) Reserved 0 Write 0s to these reserved bits.

USBISIZHn(2−0) SIZH 000h−111h In the isochronous mode (ISO = 1), these are the
3 high bits of the IN endpoint X-/Y-buffer byte
count. The 7 low bits are taken from the SIZ bits of
USBISIZn.

USBOCTXHn(7−3) Reserved 0 Write 0s to these reserved bits.

USBOCTXHn(2−0) CTXH 000h−111h In the isochronous mode (ISO = 1), these are the
3 high bits of the OUT endpoint X-buffer byte count.
The 7 low bits are taken from the CTX bits of
USBOCTXn.

USBOCTYHn(7−3) Reserved 0 Write 0s to these reserved bits.

USBOCTYHn(2−0) CTYH 000h−111h In the isochronous mode (ISO = 1), these are the
3 high bits of the OUT endpoint Y-buffer byte count.
The 7 low bits are taken from the CTY bits of
USBOCTYn.

7.4 Definition Registers for Endpoints IN0 and OUT0

IN0 and OUT0 are the control endpoints. Each has a configuration register and
a count register, which are described below.

7.4.1 Endpoint Configuration Register for IN0 or OUT0 (USBxCNF0)
(x = I or O)

Endpoint IN0 and endpoint OUT0 each has a configuration register. The
register fields are shown in Figure 36 and described in Table 28.

Figure 36. Endpoint Configuration Register for IN0 or OUT0 (USBxCNF0)

7 6 5 4 3 2 1 0

UBME Reserved� TOGGLE Reserved� STALL INTE Reserved�

R/W-0 R/W−0 R-0 R/W−0 R/W-0 R/W−0 R/W−0

Legend: R = Read; W = Write; -x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

Universal Serial Bus (USB) Module104 SPRU596A

Table 28. Bits of the Endpoint Configuration Register for IN0 or OUT0
(USBxCNF0)

Bit Field Value Description

7 UBME UBM access enable

0 The UBM cannot access this endpoint (the endpoint is inactive).

1 The UBM can access this endpoint (the endpoint is active).

6 Reserved 0 Write 0 to this reserved bit.

5 TOGGLE Endpoint data toggle. This bit reflects the data toggle sequence
(see section 1.2 on page 17).

0 The next data packet is DATA0.

1 The next data packet is DATA1.

4 Reserved 0 Write 0 to this reserved bit.

3 STALL Endpoint stall. Set this bit to tell the USB host that the endpoint is
stalled.

0 No stall

1 Endpoint stalled. A STALL handshake is sent to the host in
response to host access requests until the STALL bit is cleared.
The STALL bit is automatically cleared when the next setup
packet arrives.

2 INTE 0 Endpoint interrupt enable

0 The endpoint interrupt request is not enabled.

1 If interrupt enable bit 0 of USBxEPIE is also 1, the endpoint
interrupt request is enabled. For more details about endpoint
interrupts, see section 5.2 on page 68.

1−0 Reserved 0 Write 0s to these reserved bits.

USB Module Registers

105Universal Serial Bus (USB) ModuleSPRU596A

7.4.2 Endpoint Buffer Count Register for IN0 or OUT0 (USBxCT0)
(x = I or O)

Endpoint IN0 and endpoint OUT0 each has one count register. As shown in
Figure 37 and Figure 38, the two count registers have the same form but
different reset values for their NAK bits and different accessibility for their CT0
(count) fields. Table 29 describes the bit fields of an endpoint 0 count register.

The NAK bit corresponds to the negative acknowledgement (NAK) of the
USB protocol. While the NAK bit is set (NAK = 1), the SIE sends a NAK in
response to host requests to the endpoint. More details about the NAK bit are
given in section 3 (page 34).

The CT0 field indicates how many bytes of data should be moved out of the
endpoint buffer (for IN0) or how many bytes of data have been moved into the
endpoint buffer (for OUT0).

Figure 37. Endpoint Buffer Count Register for IN0 (USBICT0)

7 6 0

NAK CT0 (bytes)

R/W−1 R/W−0

Legend: R = Read; W = Write; -n = Value after reset

Figure 38. Endpoint Buffer Count Register for OUT0 (USBOCT0)

7 6 0

NAK CT0 (bytes)

R/W−0 R−0

Legend: R = Read; W = Write; -n = Value after reset

USB Module Registers

Universal Serial Bus (USB) Module106 SPRU596A

Table 29. Bits of the Endpoint Buffer Count Register for IN0 or OUT0
(USBxCT0)

Bit Field Value Description

7 NAK Negative acknowledgement

For endpoint IN0:

0 Data in the endpoint buffer is ready for an IN transfer.

1 Data in the endpoint buffer is not ready. The SIE sends a NAK
in response to an IN token.

For endpoint OUT0:

0 The endpoint buffer is ready for an OUT transfer.

1 Either the endpoint buffer is not ready or it contains an unread
data packet from the previous transfer. The SIE sends a NAK
in response to an OUT token.

6−0 CT0 Count bits

0−64 For endpoint IN0: When NAK = 0, this value indicates the
number of bytes of data to be moved out of the endpoint
buffer in response to an IN token.

For endpoint OUT0: This value is a running count of the
data bytes that have been received in the endpoint buffer.

Note: If CT0 is programmed with a value greater than 64, the
results will be unpredictable.

7.5 Interrupt Registers

This section describes registers that identify the USB interrupt source
(USBINTSRC), hold flags for interrupt events (USBxEPIF, USBxDGIF, and
USBxDRIF), enable or disable interrupt requests (USBxEPIE and USBxDIE).

7.5.1 Interrupt Source Register (USBINTSRC)

All interrupt requests generated in the USB module are multiplexed through
an arbiter to a single USB interrupt request to the CPU. The interrupt service
routine can determine the interrupt source by reading the interrupt source
register (USBINTSRC). Then the ISR can branch to the appropriate code
section.

When the CPU reads the INTSRC field (see Figure 39 and Table 30), it obtains
a 7-bit interrupt source code. Table 31 shows the valid INTSRC codes and the
corresponding interrupt sources.

USB Module Registers

107Universal Serial Bus (USB) ModuleSPRU596A

When the interrupt arbiter receives multiple interrupt requests at the same
time, it services them one at a time according to a predefined priority ranking.
The INTSRC value also identifies the priority of an interrupt source (02h is
highest, 52h is lowest).

For more details about the interrupt sources and how USBINTSRC is used,
see section 5 on page 65.

Figure 39. Interrupt Source Register (USBINTSRC)

15 8 7 0

Reserved INTSRC

R−x R−0

Legend: R = Read; -n = Value after reset; −x = Value after reset is not defined

Table 30. Bits of the Interrupt Source Register (USBINTSRC)

Bit Field Value Description

15−8 Reserved The read state of this field is undefined.

7−0 INTSRC 00h−52h These 8 bits indicate the interrupt source (the event that caused an
interrupt to the CPU). In addition, these bits indicate the priority of
each interrupt source. The interrupt source corresponding to
INTSRC = 02h has the highest priority, and the interrupt source
corresponding to INTSRC = 52h has the lowest priority.

USB Module Registers

Universal Serial Bus (USB) Module108 SPRU596A

Table 31. Interrupt Sources Matched to INTSRC Values

INTSRC Value/
Priority Interrupt Source

INTSRC Value/
Priority Interrupt Source

00h (No interrupt) 36h Endpoint OUT3 DMA reload

02h Endpoint OUT0 37h Endpoint OUT3 DMA GO

04h Endpoint IN0 38h Endpoint OUT4 DMA reload

06h RSTR interrupt 39h Endpoint OUT4 DMA GO

08h SUSR interrupt 3Ah Endpoint OUT5 DMA reload

0Ah RESR interrupt 3Bh Endpoint OUT5 DMA GO

0Ch Setup packet received 3Ch Endpoint OUT6 DMA reload

0Eh Setup packet overwrite 3Dh Endpoint OUT6 DMA GO

10h SOF 3Eh Endpoint OUT7 DMA reload

11h PSOF 3Fh Endpoint OUT7 DMA GO

12h Endpoint OUT1 42h Endpoint IN1 DMA reload

14h Endpoint OUT2 43h Endpoint IN1 DMA GO

16h Endpoint OUT3 44h Endpoint IN2 DMA reload

18h Endpoint OUT4 45h Endpoint IN2 DMA GO

1Ah Endpoint OUT5 46h Endpoint IN3 DMA reload

1Ch Endpoint OUT6 47h Endpoint IN3 DMA GO

1Eh Endpoint OUT7 48h Endpoint IN4 DMA reload

22h Endpoint IN1 49h Endpoint IN4 DMA GO

24h Endpoint IN2 4Ah Endpoint IN5 DMA reload

26h Endpoint IN3 4Bh Endpoint IN5 DMA GO

28h Endpoint IN4 4Ch Endpoint IN6 DMA reload

2Ah Endpoint IN5 4Dh Endpoint IN6 DMA GO

2Ch Endpoint IN6 4Eh Endpoint IN7 DMA reload

2Eh Endpoint IN7 4Fh Endpoint IN7 DMA GO

32h Endpoint OUT1 DMA reload Other Reserved

33h Endpoint OUT1 DMA GO

34h Endpoint OUT2 DMA reload

35h Endpoint OUT2 DMA GO

USB Module Registers

109Universal Serial Bus (USB) ModuleSPRU596A

7.5.2 Endpoint Interrupt Flag Register (USBxEPIF)
(x = I or O)

The USB module sets an interrupt flag in USBIEPIF every time a data packet
is moved out of an IN endpoint buffer and sets an interrupt flag in USBOEPIF
every time a data packet is moved into an OUT endpoint. For example, if a new
packet of data is moved into the OUT2 buffer, the OE2 flag is set in USBOEPIF.
In addition to setting a flag, the USB module can send an endpoint interrupt
request to the CPU. For more details about endpoint interrupt requests, see
section 5.2 on page 68.

Figure 40. OUT Endpoint Interrupt Flag Register (USBOEPIF)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 OE0

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

Figure 41. IN Endpoint Interrupt Flag Register (USBIEPIF)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

Universal Serial Bus (USB) Module110 SPRU596A

Table 32. Bits of an Endpoint Interrupt Flag Register (USBxEPIF)

Bit Field Value Description

15−8 Reserved 0 Write 0s to these reserved bits.

7−0 xE[7:0] Endpoint interrupt flag bits. x = O (for OUT) or I (for IN).

For each bit, xE7 through xE0:

0 No interrupt pending

1 Indicates that the corresponding endpoint generated an interrupt. For
example, if OE7 = 1, endpoint OUT7 generated an interrupt. Each flag bit
is set by the hardware and is cleared either when the CPU reads the
interrupt source register (USBINTSRC) with INTSRC equal to the
corresponding interrupt, or when the CPU writes a 1 to the flag bit.

7.5.3 Endpoint Interrupt Enable Register (USBxEPIE)
(x = I or O)

USBOEPIE contains interrupt enable bits for endpoints OUT0−OUT7, and
USBIEPIE contains interrupt enable bits for endpoints IN0−IN7. Endpoints IN0
and OUT0 each have an additional interrupt enable bit (called INTE) in the
endpoint configuration register (USBICNF0 or USBOCNF0, respectively).

For one of the endpoints IN1−IN7 or OUT1−OUT7, if the flag bit gets set in the
endpoint interrupt flag register (USBxEPIF) and the corresponding bit is 1 in
USBxEPIE, an endpoint interrupt request is sent to the CPU. For example, if
the IE2 bit of USBIEPIF gets set and the IE2 bit of USBIEPIE is 1, an endpoint
IN2 interrupt request is generated.

For endpoint IN0 or OUT0, the bit in USBxCNF0 must be 1 in additional to the
flag bit in USBxEPIF and the interrupt enable bit in USBxEPIE.

More details about endpoint interrupt requests are in section 5.2 (page 68).

Figure 42. OUT Endpoint Interrupt Enable Register (USBOEPIE)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 OE0

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

111Universal Serial Bus (USB) ModuleSPRU596A

Figure 43. IN Endpoint Interrupt Enable Register (USBIEPIE)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

Table 33. Bits of an Endpoint Interrupt Enable Register (USBxEPIE)

Bit Field Value Description

15−8 Reserved 0 Write 0s to these reserved bits.

7−1 xE[7:1] Endpoint interrupt enable bits 7−1. x = O (for OUT) or I (for IN).

For each bit, xE7 through xE1:

0 Endpoint interrupt requests are disabled for the corresponding
endpoint.

1 Endpoint interrupt requests are enabled for the corresponding
endpoint. For example, if IE5 = 1 in USBIEPIE, endpoint interrupt
requests are enabled for endpoint IN5.

0 xE0 Endpoint interrupt enable bit 0. x = O (for OUT) or I (for IN).

0 Endpoint interrupt requests are disabled for the corresponding
endpoint.

1 If the interrupt enable bit (INTE) of USBxCNF0 is also 1, endpoint
interrupt requests are enabled for the corresponding endpoint. For
example, if IE0 = 1 in USBIEPIE and INTE = 1 in USBICNF0,
endpoint interrupt requests are enabled for endpoint IN0.

7.5.4 DMA GO Interrupt Flag Register (USBxDGIF)
(x = I or O)

At the completion of a DMA transfer, if RLD = 0, the USB DMA controller clears
the GO bit of the endpoint, and the corresponding GO interrupt flag is set in
USBxDGIF. For example, when the DMA controller is idling after servicing
endpoint OUT6, the OE6 bit is set in USBODGIF. In addition to setting the flag,
the USB module can send a DMA GO interrupt request to the CPU. For details
on DMA GO interrupt requests, see section 5.3 on page 70.

USB Module Registers

Universal Serial Bus (USB) Module112 SPRU596A

Figure 44. OUT Endpoint DMA GO Interrupt Flag Register (USBODGIF)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 Reserved�

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

Figure 45. IN Endpoint DMA GO Interrupt Flag Register (USBIDGIF)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 Reserved�

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

Table 34. Bits of an Endpoint DMA GO Interrupt Flag Register (USBxDGIF)

Bit Field Value Description

15−8 Reserved 0 Write 0s to these reserved bits.

7−1 xE[7:1] DMA GO interrupt flag bits. x = O (for OUT) or I (for IN).

The USB DMA controller sets a DMA GO interrupt flag bit to indicate
that the corresponding DMA transfer is complete. The flag bit is
cleared either when the CPU reads the interrupt source register
(USBINTSRC) with INTSRC equal to the corresponding interrupt, or
when the CPU writes a 1 to the flag bit.

For each bit, xE7 through xE1:

0 GO interrupt not pending

1 GO interrupt pending

0 Reserved 0 Write 0 to this reserved bit.

USB Module Registers

113Universal Serial Bus (USB) ModuleSPRU596A

7.5.5 DMA RLD Interrupt Flag Register (USBxDRIF)
(x = I or O)

At the completion of a DMA transfer, if RLD = 1, the USB DMA controller clears
the RLD bit of the endpoint, and the corresponding RLD interrupt flag is set in
USBxDRIF. For example, when the DMA controller performs a reload
operation for endpoint IN7, the IE7 bit is set in USBIDRIF. In addition to setting
the flag, the USB module can send a DMA RLD interrupt request to the CPU.
For details on DMA RLD interrupt requests, see section 5.3 on page 70.

Figure 46. OUT Endpoint DMA RLD Interrupt Flag Register (USBODRIF)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 Reserved�

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

Figure 47. IN Endpoint DMA RLD Interrupt Flag Register (USBIDRIF)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 Reserved�

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

Universal Serial Bus (USB) Module114 SPRU596A

Table 35. Bits of an Endpoint DMA RLD Interrupt Flag Register (USBxDRIF)

Bit Field Value Description

15−8 Reserved 0 Write 0s to these reserved bits.

7−1 xE[7:1] DMA RLD interrupt flag bits. x = O (for OUT) or I (for IN).

The DMA RLD interrupt flag bit is set for an endpoint when the USB DMA
controller completes a DMA reload operation at that endpoint (for DMA
reload details, see section 4.5 on page 42). The flag bit is cleared either
when the CPU reads the interrupt source register (USBINTSRC) with
INTSRC equal to the corresponding interrupt, or when the CPU writes a
1 to the flag bit.

For each bit, xE7 through xE1:

0 RLD interrupt not pending

1 RLD interrupt pending

0 Reserved 0 Write 0 to this reserved bit.

7.5.6 DMA Interrupt Enable Register (USBxDIE)
(X = I or O)

USBxDIE enables or disables both the DMA GO and DMA RLD interrupt
requests. For example, if IE2 = 1 in USBIDIE, both DMA GO and DMA RLD
interrupt requests are enabled for endpoint IN2. If IE2 = 0 in USBIE, both
DMA GO and DMA RLD interrupt requests are disabled for endpoint IN2,
regardless of the values in the corresponding interrupt flag registers
(USBIDGIF and USBIDRIF). For more details about DMA interrupt requests,
see section 5.3 on page 70.

Figure 48. OUT Endpoint DMA Interrupt Enable Register (USBODIE)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 Reserved�

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

115Universal Serial Bus (USB) ModuleSPRU596A

Figure 49. IN Endpoint DMA Interrupt Enable Register (USBIDIE)

15 8

Reserved�

R/W−x

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 Reserved�

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

Table 36. Bits of an Endpoint DMA Interrupt Enable Register (USBxDIE)

Bit Field Value Description

15−8 Reserved 0 Write 0s to these reserved bits.

7−1 xE[7:1] DMA interrupt enable bits. x = O (for OUT) or I (for IN).

Each of these bits enables or disables both the DMA GO and
DMA RLD interrupt requests for the endpoint.

For each bit, xE7 through xE1:

0 GO and RLD interrupt requests are disabled for the endpoint.

1 GO and RLD interrupt requests are enabled for the endpoint.

0 Reserved 0 Write 0 to this reserved bit.

7.6 General Control and Status Registers

This section describes the USB registers that perform general control and
status functions. The bits in these registers allow such functions as resetting
the USB module, shutting down the USB module, responding to specific
conditions on the bus, and tracking USB frame numbers.

USB Module Registers

Universal Serial Bus (USB) Module116 SPRU596A

7.6.1 Global Control Register (USBGCTL)

The SOFTRST bit in USBGCTL can be used to reset the USB module without
resetting the entire DSP.

Figure 50. Global Control Register (USBGCTL)

7 1 0

Reserved� SOFTRST

R/W−0 W−0

Legend: R = Read; W = Write; -n = Value after reset
� Write 0s to these reserved bits.

Table 37. Bits of the Global Control Register (USBGCTL)

Bit Field Value Description

7−1 Reserved 0 Write 0s to these reserved bits.

0 SOFTRST Software reset

1 Reset the USB module. The effects are the same as a DSP hardware
reset: All of the USB module registers assume their power-on default
values except for USBCTL. As a result of the software reset, the USB
module is inactive and is disconnected from the bus.

As soon as the reset is complete, SOFTRST is cleared to 0, and the CPU
is free to reprogram and run the USB module.

USB Module Registers

117Universal Serial Bus (USB) ModuleSPRU596A

7.6.2 Frame Number Registers (USBFNUML and USBFNUMH)

The registers shown in Figure 51 track the current USB frame number. The
3 MSBs are in USBFNUMH and the 8 LSBs are in USBFNUML. The 11-bit
value increments up to 2047 and then rolls over to 0 and starts counting up
again.

Figure 51. Frame Number Registers (USBFNUML and USBFNUMH)

USBFNUMH

7 3 2 0

Reserved FNUMH

R−x R−0

USBFNUML

7 0

FNUML

R−0

Legend: R = Read; -n = Value after reset; −x = Value after reset is not defined

Table 38. Bits of the Frame Number Registers (USBFNUML and USBFNUMH)

Register(Bit) Field Value Description

USBFNUMH(7−3) Reserved The read state of this reserved field is undefined.

USBFNUMH(2−0) FNUMH 0h−3h Most significant 3 bits of the current USB frame
number.

USBFNUML(7−0) FNUML 00h−FFh Least significant 8 bits of the current USB frame
number.

7.6.3 PSOF Interrupt Timer Counter (USBPSOFTMR)

USBPSOFTMR is shown in Figure 52 and described in Table 39.

A start-of-frame (SOF) token is expected on the USB every 1 ms. If an endpoint
is placed in the isochronous mode, the SOF token triggers a pending DMA
transfer for that endpoint. To provide the minimum latency between the
preparation of data buffers and the availability of those buffers to the
USB DMA controller, the USB module can give advance notice of each
SOF token. Advance notice comes from a pre-SOF (PSOF) interrupt request.
If the USBPSOFTMR is programmed with a value n and the PSOF interrupt
request is enabled, the USB module generates a PSOF interrupt request n
clock cycles ahead of the expected arrival of the SOF token. The PSOF timer
runs at 750 kHZ.

USB Module Registers

Universal Serial Bus (USB) Module118 SPRU596A

Figure 52. PSOF Interrupt Timer Counter (USBPSOFTMR)

7 0

PSOFTMR

R/W−0

Legend: R = Read; W = Write; -n = Value after reset

Table 39. Bits of the PSOF Interrupt Timer Counter (USBPSOFTMR)

Bit Field Value Description

7−0 PSOFTMR 0−255 Indicates the number of clock cycles a PSOF interrupt should precede
each SOF token. The clock is 750 kHz (USB 12 MHz clock divided by
16).

Note: The time of the next SOF token is predicted and the prediction
is not guaranteed to be precise.

7.6.4 USB Control Register (USBCTL)

USBCTL enables and controls the features that are described in Table 40.
This register is not affected during a reset operation that is initiated with the
SOFTRST bit of USBGCTL. This register is affected by other reset operations.

Figure 53. USB Control Register (USBCTL)

7 6 5 4 3 2 1 0

CONN FEN RWUP FRSTE Reserved� SETUP DIR

R/W−0 R/W−1 R/W−0 R/W−1 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset
� Write 0s to these reserved bits.

Table 40. Bits of the USB Control Register (USBCTL)

Bit Field Value Description

7 CONN Connect/disconnect

0 The upstream port is disconnected (the pull-up is disabled).

1 The upstream port is connected (the pull-up is enabled).

6 FEN USB module function enable

0 The USB module is inactive.

1 The USB module is active. If the USB module is connected to the bus
(the CONN bit is 1), the USB module is ready to communicate with the
host.

USB Module Registers

119Universal Serial Bus (USB) ModuleSPRU596A

Table 40. Bits of the USB Control Register (USBCTL) (Continued)

Bit DescriptionValueField

5 RWUP Device remote wakeup request. Writing a 1 to this bit generates a
remote wakeup condition on the bus. The USB module clears RWUP
after the signal is sent.

0 Writing a 0 to this bit has no effect.

1 The CPU has asked the USB module to generate a remote wakeup
condition on the bus.

4 FRSTE USB module function reset enable

0 If a USB reset request is detected on the bus, the RSTR interrupt request
is generated, but the USB module is not reset.

1 If a USB reset request is detected on the bus, the RSTR interrupt request
is generated and the USB module is reset. All pending interrupts are
cleared except the RSTR interrupt. The USB module is not
disconnected from the bus (that is, the condition CONN = 1 is
maintained).

3−2 Reserved 0 Write 0s to these reserved bits.

1 SETUP Setup buffer not ready. Software can write a 1 to this bit when a setup
packet is being read. A write of 0 has no effect.

0 The setup buffer is ready for a new setup packet. The CPU has cleared
this SETUP bit by writing 1 to the SETUP bit of the USB interrupt flag
register (USBIF).

1 The setup buffer is not ready for a new setup packet because the CPU
has not read the previous setup packet yet. The USB module sends a
STALL in response to any setup packet until the SETUP bit is 0.

0 DIR Endpoint 0 data direction bit. The DIR bit plays a vital role during the data
phase of a control transfer. When a setup packet arrives, the CPU must
decode the packet and set or clear the DIR bit to reflect the direction of
data flow. This bit also determines the endpoint�s response to a 0-byte
handshake packet. The USB module does not generate an endpoint
interrupt upon completion of a control transfer handshake (a 0-byte
transfer). The USB module stalls endpoint 0 if an OUT packet is
expected (DIR = 0, OUT NAK = 0, IN NAK = 1) and an IN token arrives
(early handshake), or the other way around.

0 An OUT control transaction is expected. If an IN token (early
handshake) arrives, respond with STALL.

1 An IN control transaction is expected. If an OUT token (early
handshake) arrives, respond with STALL.

USB Module Registers

Universal Serial Bus (USB) Module120 SPRU596A

7.6.5 USB Interrupt Flag Register (USBIF)

USBIF indicates the current status of the bus interrupts.

Notes:

1) The STPOW and SETUP flag bits are not automatically cleared when
the CPU reads the interrupt source register (USBINTSRC). To clear
these bits, write 1s to them. The other bits in USBIF are automatically
cleared when the corresponding interrupt value is read from
USBINTSRC.

2) If a new setup token is received before the SETUP flag bit is cleared, the
USB module sets the STPOW flag bit and an STPOW interrupt request
(if enabled) is generated.

Figure 54. USB Interrupt Flag Register (USBIF)

7 6 5 4 3 2 1 0

RSTR SUSR RESR SOF PSOF SETUP Reserved� STPOW

R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W1C−0 R/W−0 R/W1C−0

Legend: R = Read; W1C = Write 1 to clear (writing 0 has no effect); -n = Value after reset
� Write 0 to this reserved bit.

Table 41. Bits of the USB Interrupt Flag Register (USBIF)

Bit Field Value Description

7 RSTR Function reset request interrupt flag. This bit is set in response to host
initiating a port reset. This bit is not affected by a USB module reset.

0 Reset condition not detected on the bus

1 Reset condition detected on the bus

6 SUSR Function suspend request interrupt flag

0 Suspend condition not detected on the bus

1 Suspend condition detected on the bus

5 RESR Function resume request interrupt flag

0 Resume request not detected on the bus

1 Resume request detected on the bus

USB Module Registers

121Universal Serial Bus (USB) ModuleSPRU596A

Table 41. Bits of the USB Interrupt Flag Register (USBIF) (Continued)

Bit DescriptionValueField

4 SOF Start of frame (SOF) interrupt flag

0 SOF packet not detected on the bus

1 SOF packet detected on the bus

3 PSOF Pre-SOF (PSOF) interrupt flag. This bit is set a multiple of 16 USB clock
cycles ahead of when the SOF token is expected. This allows the user to
provide a transfer buffer for the USB DMA controller in time to prevent
overflow or underflow conditions. This is especially helpful for isochronous
transfers. The timing of this event is controlled by the content of the
USBPSOFTMR register.

0 PSOF notification not received

1 PSOF notification received from PSOF timer

2 SETUP Setup packet interrupt flag. Clearing this bit also clears the SETUP bit in the
USB control register (USBCTL) and allows a new setup packet to move into
the setup packet buffer.

0 New setup packet not received

1 New setup packet received

1 Reserved 0 Write 0 to this reserved bit.

0 STPOW Setup overwrite interrupt flag

0 Setup overwrite has not occurred

1 Setup overwrite has occurred; that is, SETUP = 1 in USBIF and another
setup request has arrived.

7.6.6 USB Interrupt Enable Register (USBIE)

The bits in USBIE enable or disable each of the interrupts associated with the
bits in the USB interrupt flag register, USBIF (see section 7.6.5).

Figure 55. USB Interrupt Enable Register (USBIE)

7 6 5 4 3 2 1 0

RSTR SUSR RESR SOF PSOF SETUP Reserved� STPOW

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset
� Write 0 to this reserved bit.

USB Module Registers

Universal Serial Bus (USB) Module122 SPRU596A

Table 42. Bits of the USB Interrupt Enable Register (USBIE)

Bit Field Value Description

7 RSTR Reset request interrupt enable. This bit is not affected by a USB reset.

0 Reset request interrupt disabled

1 Reset request interrupt enabled

6 SUSR Suspend request interrupt enable

0 Suspend request interrupt disabled

1 Suspend request interrupt enabled

5 RESR Resume request interrupt enable

0 Resume request interrupt disabled

1 Resume request interrupt enabled

4 SOF Start-of-frame (SOF) interrupt enable

0 SOF interrupt disabled

1 SOF interrupt enabled

3 PSOF Pre-SOF (PSOF) interrupt enable

0 PSOF interrupt disabled

1 PSOF interrupt enabled

2 SETUP Setup packet interrupt enable

0 Setup packet interrupt disabled

1 Setup packet interrupt enabled

1 Reserved 0 Write 0 to this reserved bit.

0 STPOW Setup overwrite (STPOW) interrupt enable

0 STPOW interrupt disabled

1 STPOW interrupt enabled

USB Module Registers

123Universal Serial Bus (USB) ModuleSPRU596A

7.6.7 USB Device Address Register (USBADDR)

This register contains the address that uniquely identifies the USB module on
the bus.

Figure 56. USB Device Address Register (USBADDR)

7 6 0

Reserved� ADDR

R/W−x R/W−0

Legend: R = Read; W = Write; -n = Value after reset; −x = Value after reset is not defined.
� Write 0 to this reserved bit.

Table 43. Bits of the USB Device Address Register (USBADDR)

Bit Field Value Description

7 Reserved 0 Write 0 to this reserved bit.

6−0 ADDR 00h−3Fh These seven bits hold the USB address assigned to the USB module
by the host. The CPU writes the address to this register as a result
of a Set Address request from the host.

7.6.8 USB Idle Control Register (USBIDLECTL)

This register, shown in Figure 57, is not part of the USB module, but it contains
the idle enable bit that enables the CPU to put the USB module in its idle mode.
It also contains an idle status bit that indicates when the USB module is in the
idle mode. Finally, USBIDLECTL contains the USBRST bit, which the CPU can
use to hold the USB module in reset. The details about these bits are in
Table 44.

This register resides in I/O space.

Figure 57. USB Idle Control Register (USBIDLECTL)

7 3 2 1 0

Reserved� USBRST IDLESTAT IDLEEN

R/W−x R/W−0 R−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset; −x = Value after reset is not defined
� Write 0s to these reserved bits.

USB Module Registers

Universal Serial Bus (USB) Module124 SPRU596A

Table 44. Bits of the USB Idle Control Register (USBIDLECTL)

Bit Field Value Description

7−3 Reserved 0 Write 0s to these reserved bits.

2 USBRST USB module reset

0 Hold the USB module in reset.

1 Bring the USB module out of reset.

1 IDLESTAT Idle status

0 The USB module is not in the idle state.

1 The USB module is in the idle state following an IDLE instruction.

0 IDLEEN Idle enable

0 The USB module is not affected by an IDLE instruction.

1 Allow the USB module to be idled by an IDLE instruction.

If the peripherals idle domain of the DSP has been idled by an
IDLE instruction (PERIS = 1 in the idle status register), the
USB module also goes to the idle state.

Revision History

125Universal Serial Bus (USB) ModuleSPRU596A

Revision History

This document was revised to SPRU596A from SPRU596, which was
released in February 2004.

The scope of this revision was limited to adding support for the
TMS320VC5507 device.

The following changes were made in this revision:

Page Additions/Modifications/Deletions

Global Added the TMS320VC5507 device.

Index

126 Universal Serial Bus (USB) Module SPRU596A

Index

A
activating USB module with FEN bit 118

activating USB module with FEN bit 118

ADDR bits of USBADDR
described in table 123
shown in figure 123

address of USB module, held in USBADDR 123

address offset for buffer base address, specified
with USBxBAXn or USBxBAYn 94

address registers for USB DMA controller
(USBxDADHn and USBxDADLn) 83

addresses of USB module registers 75

APLL 24

APLL control register (USBAPLL) 30

APLL operation 30

APLL options for USB module clock frequency 33

APLL status bit (APLLSTAT)
described in table 25
shown in figure 25

automatic alternating accesses of X and
Y buffers 42

automatic register swapping (DMA
reload operation) 42

B
BAX bits of USBxBAXn

described in table 95
shown in figure 95

BAY bits of USBxBAYn
described in table 95
shown in figure 95

block diagram of USB module 19

break-lock indicator (BREAKLN bit) of USBDPLL
described in table 28
shown in figure 26

buffer count registers
for endpoint IN0 or OUT0 (USBxCT0) 105
for endpoint INn or OUTn (USBxCTXn

and USBxCTYn) 96
buffer RAM

contents 34
described 21
shown in block diagram 19
shown in data-transfer diagram 23

buffer RAM arbiter
described 21
shown in block diagram 19

bulk transfer, defined 15
bus interrupt requests 66
bypass mode of APLL 30
bypass mode of DPLL 26
bypass-mode divide value for DPLL (BYPASSDIV)

described in table 28
shown in figure 26

BYPASSDIV bits of USBDPLL
described in table 28
shown in figure 26

byte count for endpoint IN0/OUT0 buffer, specified
in USBxCT0 105

byte counts for X and Y buffers, specified
in USBxCTXn and USBxCTYn 96

byte orientation bit (END)
described in table 82
shown in figure 80
used to select byte orientation (endianness) of

DMA data 46
bytes already transferred by USB DMA

controller number recorded in USBxDCTn 85
bytes that endpoint buffer can hold, number

specified in USBxSIZn 100

Index

127Universal Serial Bus (USB) ModuleSPRU596A

bytes to be transferred by USB DMA controller,
number specified in USBxDSIZn 84

bytes transferred or to be transferred by UBM
number specified in USBxCT0 for endpoint

IN0 or OUT0 105
number specified in USBxCTXn and USBxCTYn

for endpoint INn or OUTn 96

C
CAT bit of USBxDCTLn

described in table 81
shown in figure 80

checking for overflow or underflow condition during
DMA transfer 50

checking transfer count of DMA transfer 48

clock generation for USB module 23

concatenation, enabling/disabling for DMA
transfer 47

concatenation control bit (CAT)
described in table 81
shown in figure 80

configuration register
for endpoint IN0 or OUT0 (USBxCNF0) 103
for endpoint INn (USBICNFn) 91
for endpoint OUTn (USBOCNFn) 92

configuring USB DMA controller 44

CONN bit of USBCTL
described in table 118
shown in figure 118

connect/disconnect bit (CONN)
described in table 118
shown in figure 118

connecting USB module to bus with CONN bit 118

control and status registers, general 115

control transfer, defined 15

count bits for endpoint IN0 (CT0)
described in table 106
shown in figure 105

count bits for endpoint OUT0 (CT0)
described in table 106
shown in figure 105

COUNT bits of USBAPLL
described in table 32
shown in figure 31

count extension bits for endpoint INn (CTXH
and CTYH)
described in table 92
shown in figure 91

count extension registers for endpoint OUTn
(USBOCTXHn and USBOCTYHn) 102

count registers
for endpoint IN0 or OUT0 (USBxCT0) 105
for endpoint INn or OUTn (USBxCTXn

and USBxCTYn) 96
for USB DMA controller (USBxDCTn) 85

CPU
interaction with USB DMA controller 38
shown in data-transfer diagram 23

CT bits, relationship to UBM 34
CT0 bits of USBICT0

described in table 106
shown in figure 105

CT0 bits of USBOCT0
described in table 106
shown in figure 105

CTX bits of USBxCTXn
described in table 97
shown in figure 96

CTXH bits of USBICNFn
described in table 92
shown in figure 91

CTXH bits of USBOCTXHn
described in table 103
shown in figure 102

CTY bits of USBxCTYn
described in table 97
shown in figure 96

CTYH bits of USBICNFn
described in table 92
shown in figure 91

CTYH bits of USBOCTYHn
described in table 103
shown in figure 102

current frame number, reported in
USBFNUMH:USBFNUML 117

Index

128 Universal Serial Bus (USB) Module SPRU596A

D
DADH bits of USBxDADHn

described in table 84
shown in figure 84

DADL bits of USBxDADLn
described in table 84
shown in figure 84

data direction bit for endpoint 0 (DIR)
described in table 119
shown in figure 118

data toggle bit (TOGGLE)
for endpoint IN0 or OUT0

described in table 104
shown in figure 103

for endpoint INn
described in table 91
shown in figure 91

for endpoint OUTn
described in table 93
shown in figure 93

data toggle mechanism 17

data-transfer diagram 23

DATA0 and DATA1 packet types 17

DBUF bit of USBICNFn
described in table 92
shown in figure 91

DBUF bit of USBOCNFn
decribed in table 94
shown in figure 93

DCT bits of USBxDCTn
described in table 85
shown in figure 85

deactivating USB module with FEN bit 118

definition registers
for endpoints IN0 and OUT0 103
for endpoints IN1-IN7 and OUT1-OUT7 87

determining when DMA reload operation
is done 49

determining when DMA transfer is done 49

device address of USB module, held
in USBADDR 123

device remote wakeup request bit (RWUP)
described in table 119
shown in figure 118

diagram of USB module 19

DIR bit of USBCTL
described in table 119
shown in figure 118

direction bit for endpoint 0 (DIR)
described in table 119
shown in figure 118

disabling concatenation for DMA transfer 47

disabling DMA interrupt requests 46

disabling DMA reload operation 45

disabling USB module with FEN bit 118

disconnecting USB module from bus with
CONN bit 118

DIV bit of USBAPLL
described in table 32
shown in figure 31

divide value for APLL (DIV)
described in table 32
shown in figure 31

divide value for DPLL in bypass mode
(BYPASSDIV)
described in table 28
shown in figure 26

divide value for DPLL in lock mode (PLLDIV)
described in table 27
shown in figure 26

DMA controller in USB module
configuring 44
described 37
interaction with CPU 38
introduced 21
shown in block diagram 19
shown in data-transfer diagram 23
state tables and state diagrams 51

DMA GO interrupt flag register (USBxDGIF) 111

DMA interrupt enable register (USBxDIE) 114

DMA interrupt requests, enabling/disabling 46

DMA registers 78

DMA reload address specified by DRAH:DRAL 86

DMA reload operation 42
determining when done 49
enabling/disabling 45

DMA reload size specified by DRSZ 87

DMA RLD interrupt flag register (USBxDRIF) 113

DMA start address specified by DADH:DADL 83

Index

129Universal Serial Bus (USB) ModuleSPRU596A

DMA transfers
checking for overflow or underflow 50
checking transfer count 48
determining when done 49
determining when reload operation is done 49
enabling/disabling concatenation 47
enabling/disabling DMA interrupt requests 46
enabling/disabling DMA reload operation 45
flow chart for CPU 41
flow chart for USB DMA controller 40
selecting endianness (byte orientation) 46
selecting whether missing packet is error 48
selecting whether to require short packets 48
setting DSP memory address 45
setting transfer size 44
summary table 39
watching for missing packet 50

DN pin
described in table 20
shown in block diagram 19

double buffer mode enable bit (DBUF)
for endpoint INn

described in table 92
shown in figure 91

for endpoint OUTn
described in table 94
shown in figure 93

DP pin
described in table 20
shown in block diagram 19

DPLL 24
DPLL control register (USBDPLL) 26
DPLL operation 26
DPLL options for USB module clock frequency 29
DPLL status bit (DPLLSTAT)

described in table 25
shown in figure 25

DRAH bits of USBxDRAHn
described in table 86
shown in figure 86

DRAL bits of USBxDRALn
described in table 86
shown in figure 86

DRSZ bits of USBxDRSZn
described in table 87
shown in figure 87

DSIZ bits of USBxDSIZn
described in table 85
shown in figure 85

DSP memory
setting address for DMA transfer 45
shown in data-transfer diagram 23

DSP shown in data-transfer diagram 23

E
EM bit of USBxDCTLn

described in table 80
shown in figure 80

emulation considerations 72
enabling concatenation for DMA transfer 47
enabling DMA interrupt requests 46
enabling DMA reload operation 45
enabling USB module with FEN bit 118
endianness bit (END bit) of USBxDCTLn

described in table 82
shown in figure 80
used to select byte orientation of DMA data 46

endpoint 0 data direction bit (DIR)
described in table 119
shown in figure 118

endpoint buffer base address registers (USBxBAXn
and USBxBAYn) 94

endpoint buffer count registers
for endpoint IN0 or OUT0 (USBxCT0) 105
for endpoint INn or OUTn (USBxCTXn and

USBxCTYn) 96
endpoint buffer size and count extension registers

(USBISIZHn, USBOCTXHn and
USBOCTYHn) 102

endpoint configuration register
for endpoint IN0 or OUT0 (USBxCNF0) 103
for endpoint INn (USBICNFn) 91
for endpoint OUTn (USBOCNFn) 92

endpoint count registers
for endpoint IN0 or OUT0 (USBxCT0) 105
for endpoint INn or OUTn (USBxCTXn and

USBxCTYn) 96
endpoint data toggle bit (TOGGLE)

for endpoint IN0 or OUT0
described in table 104
shown in figure 103

for endpoint INn
described in table 91
shown in figure 91

for endpoint OUTn
described in table 93
shown in figure 93

Index

130 Universal Serial Bus (USB) Module SPRU596A

endpoint extended count values in isochronous
mode (figure)
for endpoint INn 98
for endpoint OUTn 99

endpoint extended size values in isochronous mode
(figure), for endpoints INn and OUTn 101

endpoint IN0/OUT0 interrupt enable bit (INTE)
described in table 104
shown in figure 103

endpoint interrupt enable register (USBxEPIE) 110

endpoint interrupt flag register (USBxEPIF) 109

endpoint interrupt requests 68

endpoint stall bit (STALL)
for endpoint IN0 or OUT0

described in table 104
shown in figure 103

for endpoint INn
described in table 92
shown in figure 91

for endpoint OUTn
described in table 94
shown in figure 93

endpoint X-/Y-buffer size register (USBxSIZn) 100

endpoint, defined 16

error on missing packet bit (EM)
described in table 80
shown in figure 80

extended count values in isochronous mode (figure)
for endpoint INn 98
for endpoint OUTn 99

extended size values in isochronous mode (figure),
for endpoints INn and OUTn 101

extension registers USBISIZHn, USBOCTXHn and
USBOCTYHn 102

F
FEN bit of USBCTL

described in table 118
shown in figure 118

flow charts
role of CPU in DMA transfers 41
role of NAK bit in USB activity at IN endpoint 36
role of NAK bit in USB activity at OUT

endpoint 35
role of USB DMA controller in DMA transfers 40

FNUMH bits of USBFNUMH
described in table 117
shown in figure 117

FNUML bits of USBFNUML
described in table 117
shown in figure 117

frame number registers (USBFNUMH and
USBFNUML) 117

frame, defined 17
FRSTE bit of USBCTL

described in table 119
shown in figure 118

function enable bit (FEN)
described in table 118
shown in figure 118

function reset enable bit (FRSTE)
described in table 119
shown in figure 118

function reset request interrupt enable bit (RSTR)
described in table 122
shown in figure 121

function reset request interrupt flag bit (RSTR)
described in table 120
shown in figure 120

function resume request interrupt enable bit (RESR)
described in table 122
shown in figure 121

function resume request interrupt flag bit (RESR)
described in table 120
shown in figure 120

function suspend request interrupt enable bit
(SUSR)
described in table 122
shown in figure 121

function suspend request interrupt flag bit (SUSR)
described in table 120
shown in figure 120

G
general control and status registers 115
global control register (USBGCTL) 116
GO bit of USBxDCTLn

described in table 83
effect on USB DMA controller 38
shown in figure 80

GO interrupt flag register (USBxDGIF) 111
GO/RLD interrupt enable register (USBxDIE) 114

Index

131Universal Serial Bus (USB) ModuleSPRU596A

H
hardware reset option for USB module 73
high part of DSP memory start address (DADH)

described in table 84
shown in figure 84

host shown in data-transfer diagram 23

I
IAI bit of USBDPLL

described in table 26
shown in figure 26

idle configurations, effects on USB module 72
idle control register for USB module

(USBIDLECTL) 123
idle enable bit for USB module (IDLEEN)

described in table 124
shown in figure 123

idle mode considerations for USB clock
generator 33

idle mode of USB module 72
idle status bit for USB module (IDLESTAT)

described in table 124
shown in figure 123

IDLEEN bit of USBIDLECTL
described in table 124
shown in figure 123

IDLESTAT bit of USBIDLECTL
described in table 124
shown in figure 123

IE0-IE7 bits of USBIEPIE
described in table 111
shown in figure 111

IE0-IE7 bits of USBIEPIF
described in table 110
shown in figure 109

IE1-IE7 bits of USBIDGIF
described in table 112
shown in figure 112

IE1-IE7 bits of USBIDIE
described in table 115
shown in figure 115

IE1-IE7 bits of USBIDRIF
described in table 114
shown in figure 113

IN endpoint, defined 16

IN transfer, defined 15
indicating when setup interrupt is being serviced by

using SETUP bit 119
initialize after idle bit (IAI)

described in table 26
shown in figure 26

initialize on break bit (IOB)
described in table 27
shown in figure 26

INTE bit of USBxCNF0
described in table 104
shown in figure 103

interaction between CPU and USB DMA
controller 38

interrupt activity in USB module 65
interrupt enable bit for endpoint IN0 or OUT0 (INTE)

described in table 104
shown in figure 103

interrupt enable registers
for bus interrupts (USBIE) 121
for DMA interrupts (USBxDIE) 114
for endpoint interrupts (USBxEPIE) 110

interrupt flag registers
for bus interrupts (USBIF) 120
for DMA GO interrupts (USBxDGIF) 111
for DMA RLD interrupts (USBxDRIF) 113
for endpoint interrupts (USBxEPIF) 109

interrupt priorities 108
interrupt requests

bus 66
endpoint 68
USB DMA 70

interrupt source register (USBINTSRC) 106
interrupt sources and their priorities (table) 108
interrupt transfer, defined 16
introduction to USB module 18
INTSRC bits of USBINTSRC

described in table 107
shown in figure 107

IOB bit of USBDPLL
described in table 27
shown in figure 26

ISO bit of USBICNFn
described in table 91
shown in figure 91

ISO bit of USBOCNFn
described in table 93
shown in figure 93

Index

132 Universal Serial Bus (USB) Module SPRU596A

isochronous IN DMA transfer
missing packet response (state diagram) 63
state table 56

isochronous mode enable bit (ISO)
for endpoint INn

described in table 91
shown in figure 91

for endpoint OUTn
described in table 93
shown in figure 93

isochronous OUT DMA transfer
missing packet response (state diagram) 64
state table 60

isochronous transfer
automatic alternating accesses of X and Y

buffers 42
defined 16

L
loading the endpoint buffer base addresses

(example) 96
lock mode of APLL 30
lock mode of DPLL 26
lock-mode divide value for DPLL (PLLDIV)

described in table 27
shown in figure 26

lock-mode indicator (LOCK bit) of USBDPLL
described in table 28
shown in figure 26

low part of DSP memory start address (DADL)
described in table 84
shown in figure 84

M
maximum packet size of endpoint buffer, specified in

USBxSIZn 100
missing packet

selecting whether it is an error 48
watching for 50

missing packet response
isochronous IN DMA transfer (state

diagram) 63
isochronous OUT DMA transfer (state

diagram) 64
MODE bit of USBAPLL

described in table 32
shown in figure 31

mode selection bit for APLL (MODE)
described in table 32
shown in figure 31

monitoring DMA transfers 48
MULT bits of USBAPLL

described in table 31
shown in figure 31

multiply value for DPLL (PLLMULT)
described in table 27
shown in figure 26

multipy value for APLL (MULT)
described in table 31
shown in figure 31

N
NAK bit

effects on USB DMA controller 38
relationship to UBM 34

NAK bit of USBICT0
described in table 106
shown in figure 105

NAK bit of USBOCT0
described in table 106
shown in figure 105

NAK bit of USBxCTXn
described in table 97
shown in figure 96

NAK bit of USBxCTYn
described in table 97
shown in figure 96

non-isochronous IN DMA transfer, state table 52
non-isochronous OUT DMA transfer, state table 54
non-isochronous transfer, automatic alternating

accesses of X and Y buffers 42
notational conventions 3
number of bytes already transferred by USB DMA

controller, recorded in USBxDCTn 85
number of bytes that endpoint buffer can hold,

specified in USBxSIZn 100
number of bytes to be transferred by USB DMA

controller, specified in USBxDSIZn 84
number of bytes transferred or to be transferred by

UBM
specified in USBxCT0 for endpoint IN0 or

OUT0 105
specified in USBxCTXn and USBxCTYn for

endpoint INn or OUTn 96

Index

133Universal Serial Bus (USB) ModuleSPRU596A

O
OE0-OE7 bits of USBOEPIE

described in table 111
shown in figure 110

OE0-OE7 bits of USBOEPIF
described in table 110
shown in figure 109

OE1-OE7 bits of USBODGIF
described in table 112
shown in figure 112

OE1-OE7 bits of USBODIE
described in table 115
shown in figure 114

OE1-OE7 bits of USBODRIF
described in table 114
shown in figure 113

ON bit of USBAPLL
described in table 32
shown in figure 31

OUT endpoint, defined 16

OUT transfer
defined 15
transfer count saved to DSP memory 43

overflow condition during DMA transfer,
checking for 50

overflow/underflow bit (OVF)
described in table 82
shown in figure 80

overview of USB concepts 15

overwrite of setup packet indicated by
STPOW bit 121

OVF bit of USBxDCTLn
described in table 82
shown in figure 80

P
packet missing bit (PM)

described in table 80
shown in figure 80

path for data transferred between host and
DSP memory (figure) 23

pins/signals of USB module 20

PLL divide value for APLL (DIV)
described in table 32

shown in figure 31
PLL divide value for DPLL (PLLDIV)

described in table 27
shown in figure 26

PLL enable bit for DPLL (PLLENABLE)
described in table 27
shown in figure 26

PLL lock counter bits for APLL (COUNT)
described in table 32
shown in figure 31

PLL lock status bit for APLL (STAT)
described in table 32
shown in figure 31

PLL multiply value for APLL (MULT)
described in table 31
shown in figure 31

PLL multiply value for DPLL (PLLMULT)
described in table 27
shown in figure 26

PLL selection bits (PLLSEL)
described in table 25
shown in figure 25

PLL VCO on bit for APLL (ON)
described in table 32
shown in figure 31

PM bit of USBxDCTLn
described in table 80
shown in figure 80

power control 72
pre-start-of-frame interrupt enable bit (PSOF)

described in table 122
shown in figure 121

pre-start-of-frame interrupt flag bit (PSOF)
described in table 121
shown in figure 120

previous packet missing bit (PM)
described in table 80
shown in figure 80

primary and reload registers for USB
DMA controller 42

PSOF bit of USBIE
described in table 122
shown in figure 121

PSOF bit of USBIF
described in table 121
shown in figure 120

PSOF interrupt timer counter
(USBPSOFTMR) 117

Index

134 Universal Serial Bus (USB) Module SPRU596A

PSOFTMR bits of USBPSOFTMR
described in table 118
shown in figure 118

PU pin
described in table 20
shown in block diagram 19

R
register swapping (DMA reload operation) 42

registers of USB module
addresses of registers 75
definition registers for endpoints IN0 and

OUT0 103
definition registers for endpoints IN1-IN7 and

OUT1-OUT7 87
DMA registers 78
general control and status registers 115
high-level summary 74
interrupt registers 106

related documentation from Texas Instruments 4

reload and primary registers for USB DMA
controller 42

reload control bit (RLD)
described in table 82
effect on USB DMA controller 38
shown in figure 80

reload operation for USB DMA controller 42
determining when done 49
enabling/disabling 45

reload-address registers for USB DMA controller
(USBxDRAHn and USBxDRALn) 86

reload-size register for USB DMA controller
(USBxDRSZn) 87

remote wakeup request bit (RWUP)
described in table 119
shown in figure 118

reset request interrupt enable bit (RSTR)
described in table 122
shown in figure 121

reset request interrupt flag bit (RSTR)
described in table 120
shown in figure 120

reset state entered/exited with USBRST bit 124

resetting USB module 73

resetting USB module when USB reset request
detected on bus (FRSTE bit) 119

RESR bit of USBIE
described in table 122
shown in figure 121

RESR bit of USBIF
described in table 120
shown in figure 120

resume request interrupt enable bit (RESR)
described in table 122
shown in figure 121

resume request interrupt flag bit (RESR)
described in table 120
shown in figure 120

reversing endianness (byte orientation) for DMA
transfer 46

RLD bit of USBxDCTLn
described in table 82
effect on USB DMA controller 38
shown in figure 80

RLD interrupt flag register (USBxDRIF) 113
RLD/GO interrupt enable register (USBxDIE) 114
RSTR bit of USBIE

described in table 122
shown in figure 121

RSTR bit of USBIF
described in table 120
shown in figure 120

RWUP bit of USBCTL
described in table 119
shown in figure 118

S
selecting endianness (byte orientation) for

DMA transfer 46
selecting whether missing packet is error 48
selecting whether to require short packets 48
serial interface engine (SIE)

described 20
shown in block diagram 19
shown in data-transfer diagram 23

setting DSP memory address for DMA transfer 45
setting transfer size for DMA transfer 44
SETUP bit of USBCTL

described in table 119
shown in figure 118

SETUP bit of USBIE
described in table 122
shown in figure 121

Index

135Universal Serial Bus (USB) ModuleSPRU596A

SETUP bit of USBIF
described in table 121
shown in figure 120

setup interrupt status bit (SETUP)
described in table 119
shown in figure 118

setup overwrite interrupt enable bit (STPOW)
described in table 122
shown in figure 121

setup overwrite interrupt flag bit (STPOW)
described in table 121
shown in figure 120

setup packet interrupt enable bit (SETUP)
described in table 122
shown in figure 121

setup packet interrupt flag bit (SETUP)
described in table 121
shown in figure 120

short packet control bit (SHT)
described in table 81
shown in figure 80

short packets, selecting whether to require 48

SHT bit of USBxDCTLn
described in table 81
shown in figure 80

SIE (serial interface engine)
described 20
shown in block diagram 19
shown in data-transfer diagram 23

signals/pins of USB module 20

SIZ bits of USBxSIZn
described in table 100
shown in figure 100

size extension bits (SIZH bits) of USBOCNFn
described in table 94
shown in figure 93

size extension register for endpoint INn
(USBISIZHn) 102

size register for USB DMA controller
(USBxDSIZn) 84

SIZH bits of USBISIZHn
described in table 103
shown in figure 102

SIZH bits of USBOCNFn
described in table 94
shown in figure 93

SOF interrupt enable bit (SOF bit) of USBIE
described in table 122
shown in figure 121

SOF interrupt flag bit (SOF bit) of USBIF
described in table 121
shown in figure 120

SOF token preceded by PSOF interrupt 117
software reset bit (SOFTRST bit) of USBGCTL

described in table 116
shown in figure 116

software reset options for USB module 73
sources of USB interrupt requests 65
STALL bit of USBICNFn

described in table 92
shown in figure 91

STALL bit of USBOCNFn
described in table 94
shown in figure 93

STALL bit of USBxCNF0
described in table 104
shown in figure 103

start DMA transfer bit (GO)
described in table 83
effect on USB DMA controller 38
shown in figure 80

start-of-frame (SOF) token preceded by pre-SOF
interrupt 117

start-of-frame interrupt enable bit (SOF)
described in table 122
shown in figure 121

start-of-frame interrupt flag bit (SOF)
described in table 121
shown in figure 120

STAT bit of USBAPLL
described in table 32
shown in figure 31

state diagrams for USB DMA controller
isochronous IN DMA transfer 63
isochronous OUT DMA transfer 64

state tables for USB DMA controller
isochronous IN DMA transfer 56
isochronous OUT DMA transfer 60
non-isochronous IN DMA transfer 52
non-isochronous OUT DMA transfer 54

stop DMA transfer bit (STP)
described in table 82
effect on USB DMA controller 38
shown in figure 80

Index

136 Universal Serial Bus (USB) Module SPRU596A

storage of transfer count for an OUT transfer
(figure) 44

STP bit of USBxDCTLn
described in table 82
effect on USB DMA controller 38
shown in figure 80

STPOW bit of USBIE
described in table 122
shown in figure 121

STPOW bit of USBIF
described in table 121
shown in figure 120

suspend request interrupt enable bit (SUSR bit)
of USBIE
described in table 122
shown in figure 121

suspend request interrupt flag bit (SUSR bit)
of USBIF
described in table 120
shown in figure 120

T
terminology 15

TOGGLE bit of USBICNFn
described in table 91
shown in figure 91

TOGGLE bit of USBOCNFn
described in table 93
shown in figure 93

TOGGLE bit of USBxCNF0
described in table 104
shown in figure 103

trademarks 5

transfer count
checking during DMA transfer 48
saved to DSP memory for OUT transfer 43

transfer of data between host and DSP memory 23

transfer size, setting for DMA transfer 44

U
UBM

described 34
introduced 20
shown in block diagram 19
shown in data-transfer diagram 23

UBM access enable bit (UBME)
for endpoint IN0 or OUT0

described in table 104
shown in figure 103

for endpoint INn
described in table 91
shown in figure 91

for endpoint OUTn
described in table 93
shown in figure 93

underflow condition during DMA transfer,
checking for 50

underflow/overflow bit (OVF)
described in table 82
shown in figure 80

USB clock generator 23
USB concepts overview 15
USB control register (USBCTL) 118
USB device address register (USBADDR) 123
USB DMA address registers (USBxDADHn and

USBxDADLn) 83
USB DMA control register (USBxDCTLn) 79
USB DMA controller

configuring 44
described 37
interaction with CPU 38
introduced 21
registers 78
shown in block diagram 19
shown in data-transfer diagram 23
state tables and state diagrams 51

USB DMA count register (USBxDCTn) 85
USB DMA interrupt requests 70
USB DMA reload-address registers (USBxDRAHn

and USBxDRALn) 86
USB DMA reload-size register (USBxDRSZn) 87
USB DMA size register (USBxDSIZn) 84
USB frame number registers (USBFNUMH and

USBFNUML) 117
USB host shown in data-transfer diagram 23
USB idle control register (USBIDLECTL) 123
USB interrupt enable register (USBIE) 121
USB interrupt flag register (USBIF) 120
USB interrupt request to CPU 65
USB module clock frequency

APLL options 33
DPLL options 29

Index

137Universal Serial Bus (USB) ModuleSPRU596A

USB module function enable bit (FEN)
described in table 118
shown in figure 118

USB module function reset enable bit (FRSTE)
described in table 119
shown in figure 118

USB module reset bit (USBRST)
described in table 124
shown in figure 123

USB PLL selection register (USBPLLSEL) 24

USB terminology 15

USBADDR 123

USBCTL 118

USBFNUMH and USBFNUML 117

USBGCTL 116

USBIBAXn 94

USBIBAYn 94

USBICNF0 103

USBICNFn 91

USBICT0 105

USBICTXn 96

USBICTYn 96

USBIDADHn and USBIDADLn 83

USBIDCTLn 79

USBIDCTn 85

USBIDGIF 111

USBIDIE 114

USBIDLECTL 123

USBIDRAHn and USBIDRALn 86

USBIDRIF 113

USBIDRSZn 87

USBIDSIZn 84

USBIE 121

USBIEPIE 110

USBIEPIF 109

USBIF 120

USBINTSRC 106

USBISIZHn 102

USBISIZn 100

USBOBAXn 94

USBOBAYn 94

USBOCNF0 103

USBOCNFn 92

USBOCT0 105

USBOCTXHn 102

USBOCTXn 96

USBOCTYHn 102

USBOCTYn 96

USBODADHn and USBODADLn 83

USBODCTLn 79

USBODCTn 85

USBODGIF 111

USBODIE 114

USBODRAHn and USBODRALn 86

USBODRIF 113

USBODRSZn 87

USBODSIZn 84

USBOEPIE 110

USBOEPIF 109

USBOSIZn 100

USBPLLSEL 24

USBPSOFTMR 117

USBRST bit of USBIDLECTL
described in table 124
shown in figure 123

USBxBAXn 94

USBxBAYn 94

USBxCNF0 103

USBxCNFn
USBICNFn 91
USBOCNFn 92

USBxCT0 105

USBxCTXn 96

USBxCTYn 96

USBxDADHn and USBxDADLn 83

USBxDCTLn 79

USBxDCTn 85

USBxDGIF 111

USBxDIE 114

USBxDRAHn and USBxDRALn 86

USBxDRIF 113

USBxDRSZn 87

USBxDSIZn 84

USBxEPIE 110

USBxEPIF 109

USBxSIZn 100

Index

138 Universal Serial Bus (USB) Module SPRU596A

W
wakeup request bit (RWUP)

described in table 119
shown in figure 118

watching for missing packet during DMA
transfer 50

X
X buffer and Y buffer, automatic alternating

accesses 42

X-buffer base address register (USBxBAXn) 94

X-buffer count high bits (CTXH)
for endpoint INn

described in table 92
shown in figure 91

for endpoint OUTn
described in table 103
shown in figure 102

X-buffer count register (USBxCTXn) 96

X-buffer size high bits (SIZH)
for endpoint INn

described in table 103
shown in figure 102

for endpoint OUTn
described in table 94
shown in figure 93

X-buffer size, specified in USBxSIZn 100

Y
Y buffer and X buffer, automatic alternating

accesses 42
Y-buffer base address register (USBxBAYn) 94
Y-buffer count high bits (CTYH)

for endpoint INn
described in table 92
shown in figure 91

for endpoint OUTn
described in table 103
shown in figure 102

Y-buffer count register (USBxCTYn) 96
Y-buffer size high bits (SIZH)

for endpoint INn
described in table 103
shown in figure 102

for endpoint OUTn
described in table 94
shown in figure 93

Y-buffer size, specified in USBxSIZn 100

	Title Page - SPRU596A
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Universal Serial Bus (USB) Module
	1 USB Concepts Overview
	1.1 Terminology
	1.2 Data Toggle Mechanism

	2 Introduction to the USB Module
	2.1 Block Diagram of the USB Module
	2.2 Connection of the USB Module to the Bus
	2.3 Transfer of Data Between the USB Host and the DSP Memory
	2.4 Clock Generation for the USB Module
	2.4.1 USB Clock Generator on TMS320VC5509 Devices Versus
TMS320VC5507/5509A Devices
	2.4.2 DPLL Operation
	2.4.3 APLL Operation (TMS320VC5507/5509A Devices Only)
	2.4.4 Idle Mode Considerations

	3 USB Buffer Manager (UBM)
	4 USB DMA Controller
	4.1 Advantage of Using the USB DMA Controller
	4.2 Things To Consider Before Using the USB DMA Controller
	4.3 Interaction Between the CPU and the USB DMA Controller
	4.4 Automatic Alternating Accesses of the X and Y Buffers
	4.5 DMA Reload Operation (Automatic Register Swapping)
	4.6 Transfer Count Saved to DSP Memory for an OUT Transfer
	4.7 Configuring the USB DMA Controller
	4.7.1 Set the Transfer Size
	4.7.2 Set the DSP Memory Address
	4.7.3 Enable/Disable a DMA Reload Operation
	4.7.4 Enable/Disable DMA Interrupt Requests
	4.7.5 Select the Endianness (Byte Orientation) of Data
	4.7.6 Enable/Disable Concatenation
	4.7.7 Select Whether a Short Packet is Required to End a USB Transfer
	4.7.8 Select Whether a Missing Packet is an Error During Isochronous Transfers

	4.8 Monitoring DMA Transfers
	4.8.1 Checking the Transfer Count
	4.8.2 Determining Whether a DMA Transfer is in Progress or is Done
	4.8.3 Determining Whether a DMA Reload Operation is in Progress or is Done
	4.8.4 Checking for an Overflow or Underflow Condition
	4.8.5 Watching for a Missing Packet During an Isochronous Transfer

	4.9 USB DMA State Tables and State Diagrams

	5 Interrupt Activity in the USB Module
	5.1 Bus Interrupt Requests
	5.2 Endpoint Interrupt Requests
	5.3 USB DMA Interrupt Requests

	6 Power, Emulation, and Reset Considerations
	6.1 Putting the USB Module into Its Idle Mode
	6.2 USB Module Indirectly Affected by Certain Idle Configurations
	6.3 USB Module During Emulation
	6.4 Resetting the USB Module

	7 USB Module Registers
	7.1 High-Level Summary of USB Module Registers
	7.2 DMA Registers
	7.2.1 USB DMA Control Register (USBxDCTLn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.2.2 USB DMA Address Registers (USBxDADHn and USBxDADLn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.2.3 USB DMA Size Register (USBxDSIZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.2.4 USB DMA Count Register (USBxDCTn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.2.5 USB DMA Reload-Address Registers (USBxDRAHn and USBxDRALn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.2.6 USB DMA Reload-Size Register (USBxDRSZn)
(x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)

	7.3 Definition Registers for Endpoints IN1-IN7 and OUT1-OUT7
	7.3.1 Endpoint Configuration Register for INn (USBICNFn) (n = 1, 2, 3, 4, 5, 6, or 7)
	7.3.2 Endpoint Configuration Register for OUTn (USBOCNFn) (n = 1, 2, 3, 4, 5, 6, or 7)
	7.3.3 Endpoint Buffer Base Address Registers for INn or OUTn (USBxBAXn, USBxBAYn) (x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.3.4 Endpoint Buffer Count Registers for INn or OUTn (USBxCTXn, USBxCTYn) (x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.3.5 Endpoint X-/Y-Buffer Size Register for INn or OUTn (USBxSIZn) (x = I or O; n = 1, 2, 3, 4, 5, 6, or 7)
	7.3.6 Endpoint Buffer Size and Count Extension Registers (USBISIZHn, USBOCTXHn, and USBOCTYHn) (n = 1, 2, 3, 4, 5, 6, or 7)

	7.4 Definition Registers for Endpoints IN0 and OUT0
	7.4.1 Endpoint Configuration Register for IN0 or OUT0 (USBxCNF0) (x = I or O)
	7.4.2 Endpoint Buffer Count Register for IN0 or OUT0 (USBxCT0) (x = I or O)

	7.5 Interrupt Registers
	7.5.1 Interrupt Source Register (USBINTSRC)
	7.5.2 Endpoint Interrupt Flag Register (USBxEPIF) (x = I or O)
	7.5.3 Endpoint Interrupt Enable Register (USBxEPIE) (x = I or O)
	7.5.4 DMA GO Interrupt Flag Register (USBxDGIF) (x = I or O)
	7.5.5 DMA RLD Interrupt Flag Register (USBxDRIF) (x = I or O)
	7.5.6 DMA Interrupt Enable Register (USBxDIE) (X = I or O)

	7.6 General Control and Status Registers
	7.6.1 Global Control Register (USBGCTL)
	7.6.2 Frame Number Registers (USBFNUML and USBFNUMH)
	7.6.3 PSOF Interrupt Timer Counter (USBPSOFTMR)
	7.6.4 USB Control Register (USBCTL)
	7.6.5 USB Interrupt Flag Register (USBIF)
	7.6.6 USB Interrupt Enable Register (USBIE)
	7.6.7 USB Device Address Register (USBADDR)
	7.6.8 USB Idle Control Register (USBIDLECTL)

	Revision History
	Index

