
Application Report
SPRABY4–March 2015

Accessing External SDRAM on the TMS320F2837x/2807x
Microcontrollers Using C/C++

David M. Alter, Cody Addison, Vishal Coelho

ABSTRACT
The TMS320F2837x and TMS320F2807x microcontrollers provide facilities for interfacing to external
SDRAM memory through two external memory interface modules. The address space for this memory lies
beyond the 22-bit addressable range traditionally accessed with the C28x CPU. This application report
describes how to access the SDRAM memory from C/C++ code.

Contents
1 Introduction ... 1
2 Compiler Enhancement and Basic Usage.. 2
3 Far Attribute Examples.. 4
4 Recommended Use of Far Memory ... 10
5 Performance Tips .. 10
6 Conclusion .. 12
7 References .. 13

1 Introduction
The External Memory Interfaces (EMIF) on the TMS320F2837x and TMS320F2807x families of
microcontrollers have the SDRAM address range in far memory, here defined as being above 22 bits
address (1). This is beyond the 22-bit range that the C/C++ compiler historically supported, and also incurs
some limitations due to the C28x CPU architecture itself. The C28x core has a 22-bit program address
bus, a 16-bit stack pointer (SP), and a 16-bit Data Page Pointer (DP). This limits available addressing
methods for far memory. Specifically, the following restrictions must be observed:
• TMS320C2000™ C/C++ Compiler version 6.4.0 or later is required
• Only global and static local data can exist in far memory. Code is restricted to the lower 22 bits of

memory (henceforth termed near memory), while the stack (for automatic variables, also called non-
static local variables) is restricted to the lower 16 bits of memory.

• The direct addressing mode for instructions requires use of the 16-bit DP register (plus 6 least-
significant bits from the instruction op-code itself). The combined address is limited to 22-bit range. As
a result, only indirect addressing (using the 32-bit wide XARn registers) can be used to access data in
far memory. The compiler will take care of using the correct addressing modes.

• Instructions that use the program bus cannot access far memory with this bus. These instructions are:
MAC, DMAC, XMAC, XMACD, IMACL, QMACL PREAD, PWRITE, XPREAD, and XPWRITE.

(1) Be careful not to confuse the present usage of the term ‘far’ with earlier compiler usage. Historically, the
TMS320C2000 compilers had support for small and large memory models, with small model being defined
as 16 bits address range and large model defined as 22 bits address range. With small memory model,
there was the ‘far’ keyword which declared a data object as being above 16 bits. This usage of ‘far’ is now
deprecated, and small memory model is no longer supported.

TMS320C2000, Texas Instruments, C2000, controlSUITE are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

Compiler Enhancement and Basic Usage www.ti.com

2 Compiler Enhancement and Basic Usage

2.1 The Far Data Object Attribute
Starting with the TMS320C2000 C/C++ Compiler v6.4.0, far data objects can be accessed from C/C++
code by declaring the data object with the GCC-style attribute __attribute__((far)). This attribute will cause
the compiler to use the full 32-bit address of the data object to access it. The far attribute can be applied
to any global or static local data object.

To prevent the compiler from employing instructions that uses the program bus to access the data object,
the volatile keyword must also be applied in addition to the far attribute. The volatile keyword was
traditionally used to tell the compiler that the data object may change outside the scope of the compiler,
but it also already had the property in the TMS320C2000 C/C++ compiler that program bus instructions
were not utilized to access such data objects. Therefore, it was convenient to exploit this property and
press volatile into service for far data objects as well.

Here is a fundamental C-code example, first without using the far attribute:

int x; // x is in near memory
int *p; // p is in near memory

void foo() {
p = &x;

}

which compiles to:

_foo:
MOVL XAR4,#_x
MOVW DP,#_p
MOVL @_p,XAR4
LRETR

Above, the “MOVL XAR4, #x" will only load the 22 least-significant bits of the address of x into the XAR4
register. Hence, x must be linked to near memory for the code to operate correctly.

Here is the same C-code example with x located in far memory:

__attribute__((far)) volatile int x; // x is in far memory
volatile int *p; // p is in near memory

void foo() {
p = &x;

}

2 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers SPRABY4–March 2015
Using C/C++ Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

www.ti.com Compiler Enhancement and Basic Usage

which compiles to:

foo:
MOV AL,#_x+0
MOV AH,#_x+0 >> 16
MOVW DP,#_p
MOVL @_p,ACC
LRETR

Above, the full 32 bits of the address of x is loaded into the accumulator register, which in turn is assigned
to pointer p. Hence, x can be linked to far memory and the code will work correctly.

Note in the C-code above that both x and p were declared as volatile (or more correctly for p, it was
declared as pointing to a volatile object). If the volatile keyword is not applied to a symbol declared with
the far attribute, the compiler will apply it automatically and issue a warning to notify the user. A warning
will also be issued if a non-volatile pointer is assigned the address of a volatile data object, although in this
case volatile is not automatically applied by the compiler. Also note that the declaration of p does not
make any mention of far. This is because the far attribute applies to a data object itself, and not to
pointers that reference it (although one could declare a pointer as being far if the pointer itself is going to
live in far memory).

2.2 Linking Requirements
Data objects declared with the far attribute are placed by the compiler into two special sections. The
.farbss section contains far variables, while the .farconst section contains far constant data (those
declared with the const keyword). The two sections can then be placed in far memory as desired using the
linker command file. For the .farbss section, this linking is straightforward. In the following example, a
512K×16 SDRAM is located connected to EMIF1 chip select zone 0 (EMIF1_CS0n). This gives it a
starting address of 0x80000000.

/**
* MyFile.cmd - linker command file
**/

MEMORY
{
PAGE 1: /* Data Memory */

SDRAM : origin = 0x80000000, length = 0x00080000 /* 512Kx16 SDRAM */
}

SECTIONS
{

.farbss: > SDRAM, PAGE = 1
}

However, in the case of .farconst, separate load and run addresses will be needed since constants must
be loaded to persistent (non-volatile) memory such as flash. User code will need to copy the section from
the load address (in flash) to the run address (in SDRAM) at runtime as part of the software initialization
procedure. While the code generation tools provide facilities for implementing this [5], you are strongly
discouraged from placing constants in far memory since there is no advantage in doing so. For more
information on the impracticality of far constants on the TMS320F2837x/2807x devices, see tip # 3 in
Section 5.

3SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

Far Attribute Examples www.ti.com

3 Far Attribute Examples

3.1 Correct Usage Examples
Example 1. Far Data, Near Pointer

__attribute__((far)) volatile int x; // x is in far memory
volatile int* p; // p is in near memory

void foo(void) {
p = &x; // p points to x
*p = 0x1234; // write to x

}

In the declaration of p above, the volatile indicates that p points to a volatile object. The pointer p itself is
not volatile. Since p was not declared as far, there was no need to make p volatile.

Example 2. Far Data, Far Pointer

__attribute__((far)) volatile int x; // x is in far memory
volatile __attribute__((far)) int* volatile p; // p is in far memory

void foo(void) {
p = &x; // p points to x
*p = 0x1234; // write to x

}

In the declaration of p above, the left-most volatile indicates that p points to a volatile object, while the
right-most volatile indicates that p itself is volatile. Since p was declared with the far attribute, it must also
be declared as volatile itself. Notice that for pointers, the right-most volatile must come after the data type,
int*. It cannot be placed before the data type:

volatile __attribute__((far)) volatile int* p; // invalid

Also for pointers, the left-most volatile could be placed after the far attribute if desired:

__attribute__((far)) volatile int* volatile p; // valid, alternate format

However, in this application report, the convention that is followed places the volatile before the far
attribute for pointers, and this is the suggested format.

volatile __attribute__((far)) int* volatile p; // valid, suggested format

4 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers SPRABY4–March 2015
Using C/C++ Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

www.ti.com Far Attribute Examples

Example 3. Near Data, Far Pointer

int x; // x is in near memory
__attribute__((far)) int* volatile p; // p is in far memory

void foo(void) {
p = &x; // p points to x
*p = 0x1234; // write to x

}

Example 4. Volatile Near Data, Far Pointer

volatile int x; // x is in near memory
volatile __attribute__((far)) int* volatile p; // p is in far memory

void foo(void) {
p = &x; // p points to x
*p = 0x1234; // write to x

}

Example 5. Far Local Static Objects

void foo(void) {
static volatile __attribute__((far)) int x; // x is in far memory
static volatile __attribute__((far)) int* volatile p; // p is in far memory
p = &x; // p points to x
*p = 0x1234; // write to x

}

Example 6. Far Constants

const __attribute__((far)) volatile int c[4]={0,1,2,3}; // c is in far memory
const static __attribute__((far)) volatile int d[3]={4,5,6}; // d is in far memory

void foo(void) {
const static __attribute__((far)) volatile int e[2]={7,8}; // e is in far memory
...

}

By regular ANSI-C conventions in the example above, c has global scope, d has local scope within the
source file, and e has local scope within the foo() function. For information on the impracticality of far
constants on the TMS320F2837x/2807x devices, see tip # 3 in Section 5.

5SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

Far Attribute Examples www.ti.com

Example 7. Structure Declarations
Case 1: The structure lives in near memory, p and q point to near memory.

typedef struct {
unsigned int a;
unsigned long b[100];
unsigned int *p;
long *q;

} MyStruct_t;

MyStruct_t x;

Case 2: The structure lives in near memory, p points to far memory, q points to near memory.

typedef struct {
Uint16 a;
Uint32 b[100];
Uint16 *p;
int32 *q;

} MyStruct_t;

__attribute__((far)) volatile MyStruct_t x;

Case 3: The structure lives in far memory, p and q point to near memory.

typedef struct {
unsigned int a;
unsigned long b[100];
unsigned int *p;
long *q;

} MyStruct_t;

__attribute__((far)) volatile MyStruct_t x;

Case 4: The structure lives in far memory, p points to far memory, q points to near memory.

typedef struct {
unsigned int a;
unsigned long b[100];
volatile unsigned int *p;
long *q;

} MyStruct_t;

__attribute__((far)) volatile MyStruct_t x;

6 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers SPRABY4–March 2015
Using C/C++ Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

www.ti.com Far Attribute Examples

With structures, all structure members are far (or near) if the structure itself is far (or near). Basically, the
members are the structure, and live wherever the structure lives. Pointer members can be declared as
pointing to near or far objects independent of where the structure (and, therefore, the pointer member)
itself lives. Remember, for pointers there are two near and far properties: where the pointer itself lives and
where the object being pointed to lives. These properties are independent and apply to all pointers
whether they are members of a structure or separately declared pointers.

Example 8: Function Parameter Passing

int foo(int, volatile int*); // function prototype
__attribute__((far)) volatile int x; // x is in far memory
__attribute__((far)) volatile int y[10]; // y is in far memory

int main(void) {
int z; // z is local (on stack)
z = foo(x, y); // function call

}

int foo(int a, volatile int* p) {
return(a + *p);

}

It is important to note that the passed parameters are not declared ‘far’. The argument a is passed by
value, while p points to a far data object. The parent function passes the entire 32-bit address of the array
y (since it is a far object), which the child function receives in its entirety, in either a working register
(XARn) or on the stack. Due to the way the hardware works, the child function will always manipulate all
32 bits of the address (and not just 22 bits), and also always access the contents of y through the 32-bit
argument p in indirect addressing mode (and never use direct addressing). The use of volatile when
declaring the argument p prevents the compiler from using the program bus when it is being de-
referenced.

3.2 Incorrect Usage Examples
Example 9. Failing to Declare a Far Object as Volatile

__attribute__((far)) int x; // x is in far memory

void foo(void) {
x = 5;

}

A compiler warning will be issued:

warning #2618–D: Variables that are far qualified must be declared volatile to prevent using
instructions that require unified memory. Applying the volatile type qualifier to variable "x".

7SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

Far Attribute Examples www.ti.com

The warning is a reminder that far objects must be declared volatile to keep the compiler from using
program bus access to such objects. The warning further states that the compiler is applying volatile
automatically. It is best practice however to correct the coding mistake:

void foo(void) {
__attribute__((far)) volatile int x; // x is in far memory
x = 5;
}

Example 10. Non-Static Local Objects Declared as Far

void foo(void) {
__attribute__((far)) volatile int x; // x is in far memory
x = 5;
}

A compiler warning will be issued:

error #2130: attribute "__far" does not apply to automatic variables

Non-static local objects are always placed on the stack, and therefore they cannot be declared far
independently. In addition, the stack is restricted to the lower 16-bit address range so anything on the
stack will always be in near memory. The correct code is:

void foo(void) {
int x; // x is local (on stack)
x = 5;
}

Example 11. Volatile Object Address Assigned to a Non-Volatile Pointer

__attribute__((far)) volatile int x; // x is in far memory
__attribute__((far)) int* volatile p; // p is in far memory
void foo(void) {
p =*" // p points to x
}

A compiler warning will be issued:

warning #515–D: a value of type "volatile int *“ cannot be assigned to an entity of
type "int *"

8 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers SPRABY4–March 2015
Using C/C++ Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

www.ti.com Far Attribute Examples

If a pointer is assigned to a far (volatile) data object, the pointer must be declared as pointing to a volatile
object. Above, p itself has been declared as volatile because it is in far memory, but it was not declared as
pointing to a volatile object. The corrected C-code is:

__attribute__((far)) volatile int x; // x is in far memory
volatile __attribute__((far)) int* volatile p; // p is in far memory
void foo(void) {
p = &x; // p points to x
}

Example 12. Volatile Object Address Passed to a Function as a Non-Volatile Pointer

int foo(int, int*); // function prototype
__attribute__((far)) volatile int x; // x is in far memory
__attribute__((far)) volatile int y[10]; // y is in far memory

int main(void) {
int z; // z is local (on stack)
z = foo(x, y);

}

int foo(int a, int* p) {
return(a + *p);

}

A compiler warning will be issued:

warning #169–D: argument of type "volatile int *" is incompatible with parameter of
type "int *"

This mistake is very similar to Example 11. Instead of an explicit assignment, however, the non-volatile
pointer is assigned the address of a volatile object as a passed function parameter. It is tempting to use
typecasting to fix the warning, but this is not correct.

z = foo(x, (int*)y); // incorrect and dangerous!

9SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

Recommended Use of Far Memory www.ti.com

While the typecast eliminates the warning, it does not protect against the foo() function using the program
bus instructions with the pointer p. The proper way to correct this code is to declare p as pointing to a
volatile object:

int foo(int, volatile int*); // function prototype
__attribute__((far)) volatile int x; // x is in far memory
__attribute__((far)) volatile int y[10]; // y is in far memory

int main(void) {
int z; // z is local (on stack)
z = foo(x, y);

}

int foo(int a, volatile int* p) {
return(a + *p);

}

4 Recommended Use of Far Memory
It is recommended to only use SDRAM for storage of large data blocks (arrays), and that a given block be
copied to internal memory prior to operating on it. Operating on the data directly in the SDRAM requires
you to consistently apply volatile to all pointers that might reference the data. The volatile type qualifier
can have a significant performance impact on compiler generated code. There is also the potential
performance degradation from the SDRAM itself to consider, which on TMS320F2837x/2807x devices is
relatively slow. Additionally, there are currently no plans to enhance the majority of Texas Instruments™
provided C2000™ software collateral (for example, libraries) with support for far memory data objects.
Therefore, using a store-and-copy approach to the SDRAM is preferred.

When implementing a store-and-copy approach with the SDRAM, either the DMA or the CPU can be used
to copy the block. If using the CPU, the memcpy_fast_far() function in the C28x FPU DSP library (2)

v1.50.00.00 (and later) provides a cycle efficient mechanism. There are also two example projects in
controlSUITE™ that illustrate the store-and-copy approach. The project emif1_16bit_sdram_far uses the
CPU to move the data with the memcpy_fast_far() routine. The project emif1_16bit_sdram_dma uses the
DMA to do the data movement.

5 Performance Tips
Although the recommended usage for far memory (SDRAM) on TMS320F2837x/2807x devices is store-
and-copy (see Section 4) you may have no alternative than to make wider use of it in your application. For
such situations, the following performance tips are provided:
1. Restrict ‘far’ usage to global objects accessed with pointers (arrays).

Avoid making random access data far since the direct addressing mode cannot be used with far
memory. The indirect addressing mode that is employed is less efficient since the XARn auxiliary
register needs to be reloaded for access to each data object (as opposed to with arrays that are
typically sequentially accessed and, therefore, can utilize the increment and decrement hardware
modifiers at no cost, such as *XARn++).

2. Keep pointers in near memory (even if they point to far objects).
(a) Pointers in far memory can incur performance degradation because of the volatile designation.

They are stored and recalled for each use, and pointer adjustment can even be done manually
(read, modify, write-back) rather than using the no-cost increment and decrement hardware
modifiers for indirect addressing (XARn++).

(b) Pointers are generally limited in number so they can be easily stuffed into internal RAM.
(c) Non-static local pointers are always placed on the stack and will always be near.

(2) The C28x FPU library is available in the controlSUITE software package, which can be downloaded
from the following URL: http://www.ti.com/tool/CONTROLSUITE.

10 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers SPRABY4–March 2015
Using C/C++ Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/tool/CONTROLSUITE
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

www.ti.com Performance Tips

3. Keep constants in near memory.
The only far memory on TMS320F2837x/2807x devices is external SDRAM. There is no benefit to
placing constants there since the access performance of the flash is better than that of the SDRAM. In
addition, the SDRAM is not persistent when power is removed so any constants located there would
need to be copied from non-volatile memory (Flash) at runtime anyway. The ability to locate constants
in far memory is really just provided by the compiler for completeness.

4. Heed the compiler warnings.
The compiler is quite diligent about issuing warnings where far data object usage is concerned. These
warnings should never be ignored. It almost always means the code will not function correctly. Properly
fix the code to eliminate the warning.

5. Beware of unintended consequences of far data being ‘volatile’.
The volatile keyword forces the compiler to do more than just avoid program bus instructions. It causes
the compiler to do exactly what the C-code indicates, and eliminates many optimizations that the
compiler might otherwise make. For example, the following three code snippets will generate different
runtime behavior:

Case 1: Original code - x will be read 3 times, and written 2 times

__attribute__((far)) volatile float x;

void foo(void) {
x = x*x;
x = x + 6;

}

Case 2: Combine operations into a single instruction - x will be read 2 times, and written 1 time

__attribute__((far)) volatile float x;

void foo(void) {
x = x*x + 6;

}

Case 3: Use non-volatile intermediate variables - x will be read 1 time and written 1 time

__attribute__((far)) volatile float x;

void foo(void) {
float tmp = x;
tmp = tmp*tmp;
x = tmp + 6;

}

11SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

Conclusion www.ti.com

6. Library functions may not work correctly with far data objects.
(a) The root cause of the failure is the called function using a program bus instruction to access the far

data.
(b) Any far argument passed as a non-volatile pointer argument may have issues (pointers that point to

far memory, arrays located in far memory where the array address is passed as a pointer).
However, the compiler should issue a warning when the function is called since a pointer accessing
far memory will have been declared as volatile, and the function prototype and declaration are not
expecting this (see Example 12 in Section 3.2).

(c) Any argument passed by value will be handled correctly, and will produce no compiler warnings.
This is because the value of the argument is accessed by the parent function, and passed to the
child. The child function never accesses the far data object directly. Library functions that only have
pass-by-value arguments are safe to use. For example, such standard runtime support library math
functions as sin() and pow() will work.
double sin(double x);
double pow(double x, double y);

(d) To make an existing C function work with far data, adjust the function prototype and declaration to
add volatile to any passed pointers that point to far data objects. The function should then be re-
compiled. If any local pointers have been declared in the function and are assigned (equated) to a
passed pointer to far data, a compiler error will be generated. The local pointer declaration should
then be modified to declare the pointer as pointing to far data.

(e) To make an existing ASM function work with far data, examine the assembly code source for
instructions that use the program bus (MAC, DMAC, XMAC, XMACD, IMACL, QMACL, PREAD,
PWRITE, XPREAD, XPWRITE), and modify the function as needed. If source code is not available,
the disassembly window in the debugger can be used to inspect for these instructions and at least
determine whether or not the function is safe to use.

(f) Be aware that library functions can change if the library is revised.
(g) Far global and static local objects with initialization values will be correctly initialized by the runtime

support library C-environment initialization routine, _c_int00(). For example:

__attribute__((far)) volatile float x = 5; // x is in far memory

void foo(void) {
static volatile __attribute__((far)) int y = 8; // y is in far memory

…
}

In the above, x and y are initialized to 5 and 8, respectively, during execution of the _c_int00()
routine; nothing special needs to be done for this to occur.

6 Conclusion
The coding methodology for accessing far memory data objects on the TMS320F2837x/2807x devices
using the C/C++ language has been presented. The technique utilizes the GCC-style attribute
__attribute__((far)) combined with the volatile keyword to notify the compiler of far memory objects. While
the compiler and device architecture themselves place few restrictions on far memory usage, from a
performance perspective it is recommended that far memory to a store-and-copy mode of operation is
limited.

12 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers SPRABY4–March 2015
Using C/C++ Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

www.ti.com References

7 References
1. TMS320C28x CPU and Instruction Set Reference Guide (SPRU430)
2. TMS320F2837xD Dual-Core Delfino™ Microcontrollers Data Manual (SPRS880)
3. TMS320F2837xS Delfino™ Microcontrollers Data Manual (SPRS881)
4. TMS320F2807x Piccolo™ Microcontrollers Data Manual (SPRS902)
5. Running an Application from Internal Flash Memory on the TMS320F28xxx DSP (SPRA958)

13SPRABY4–March 2015 Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers
Using C/C++Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/lit/pdf/SPRU430
https://www.ti.com/lit/pdf/SPRS880
https://www.ti.com/lit/pdf/SPRS881
https://www.ti.com/lit/pdf/SPRS902
https://www.ti.com/lit/pdf/SPRA958
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABY4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

https://www.ti.com/audio
https://www.ti.com/automotive
http://amplifier.ti.com
https://www.ti.com/communications
http://dataconverter.ti.com
https://www.ti.com/computers
http://www.dlp.com
https://www.ti.com/consumer-apps
http://dsp.ti.com
https://www.ti.com/energy
https://www.ti.com/clocks
https://www.ti.com/industrial
http://interface.ti.com
https://www.ti.com/medical
http://logic.ti.com
https://www.ti.com/security
http://power.ti.com
https://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
https://www.ti.com/video
http://www.ti-rfid.com
https://www.ti.com/omap
http://e2e.ti.com
https://www.ti.com/wirelessconnectivity

	Accessing External SDRAM on the TMS320F2837x/2807x Microcontrollers Using C/C++
	1 Introduction
	2 Compiler Enhancement and Basic Usage
	2.1 The Far Data Object Attribute
	2.2 Linking Requirements

	3 Far Attribute Examples
	3.1 Correct Usage Examples
	3.2 Incorrect Usage Examples

	4 Recommended Use of Far Memory
	5 Performance Tips
	6 Conclusion
	7 References

	Important Notice

