
Replacing Optocouplers With Opto-emulators

Example Block Diagram of Replacing an Optocoupler With an Opto-emulator

Design Considerations

- · Opto-emulators are pin-to-pin drop-in replacements for optocouplers
- TI offers opto-emulators with different output types: Digital and Analog
- Protects low voltage parts in a system from high-voltage circuits
- · Allows signal transfer between controller devices and peripheral ICs
- [FAQ] What are the benefits of Opto-emulators vs. Optocouplers? TI E2E™ support forums
- [FAQ] Opto-emulators Top Questions, Answered TI E2E support forums
- Opto-emulators explained: Why you should upgrade your optocoupler technology TI E2E support forums
- Opto-emulators | Tl.com

Need additional assistance? Ask our engineers a question on the *TI E2E™ Isolation Support Forum*.

Recommended Parts

Table 1. Digital Output Opto-emulators

Part Number	Output Type	V _{cc}	Data Rate	Pin-to-Pin Optocouplers
ISOM8710	CMOS		25Mbps	ACPL-M21L
ISOM8711	Open Collector	2.7 V to 5.5 V		ACPL-M75L TLP2366 LTV-M601 and more

Table 2. Analog Output Opto-emulators

table 2.7 mining output option annualities									
Part Number	Input Type	Output Type	V _F (MAX)	CTR	Pin-to-Pin Optocouplers				
ISOM8110	- DC Input	- Open Collector	1.4 V	100% to 155%	HCPL-181				
ISOM8111			1.4 V	150% to 230%	ACPL-217 LTV356T				
ISOM8112			1.4 V	255% to 380%	LTV357T TLP185 TLP181 PS2701A PS2811-1 EL816 EL3H7				
ISOM8113			1.4 V	375% to 560%					
ISOM8115	Bidirectional DC Input		1.5 V	100% to 155%					
ISOM8116			1.5 V	150% to 230%					
ISOM8117			1.5 V	255% to 380%					
ISOM8118			1.5 V	375% to 560%	and more				

To find a pin-to-pin alternative to the optocouplers in your design, search TI's *cross reference tool*. For more opto-emulators, browse through the *online parametric tool*.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated