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1 Introduction

Amplifying a voltage signal by more than 100 V
V using a single operational amplifier while

maintaining several MHz, or even tens of MHz of bandwidth, can prove difficult to both design
and to implement. The goal of this paper is to describe the development and the physical
implementation of a high-gain, multi-stage design featuring a voltage gain well above 100 V

V .
The first part of the paper discusses the general factors to be considered during the design
phase while the second part focuses on physical implementation.

2 Signal-Chain Considerations

2.1 First Stage - Input Noise

Since the noise of the first stage is the limiting factor from a noise perspective, input noise
is one of the most important factors to be considered when selecting the amplifier for the
first stage. Another key factor is the available bandwidth. Starting with the traditional gain-
bandwidth product (GBWP) where the product of the gain and the bandwidth is constant
for a voltage-feedback amplifier (see 2.1), a quick survey of non-unity gain stable amplifiers
combining the highest possible GBWP and low noise yields the results as shown in table 2.1.

Gain×Bandwidth = GBWP (2.1)

Table 2.1: Devices combining high GBWP and low input noise

Part Number Input Voltage Noise Density [nV/
√
Hz] GBWP [MHz]

OPA847 0.85 3900
OPA846 1.1 1800
LMH6629 0.69 3900

Note that FET input devices have not been considered here because the input voltage noise
tends to be high, while input current noise is low. Because low value resistors are used to
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2 Signal-Chain Considerations

minimize noise contribution, the low input bias current of a FET amplifier is not needed here.
Only relatively low input impedance voltage sources are considered.

2.2 Noise Considerations

Consider using a non-inverting amplifier architecture, allowing its input impedance to be
matched to any source impedance as well as minimizing system noise. Also, at high gain,
the output voltage noise density can be approximated as shown in equation 2.2.

eo
∼= (en +

√
4kTRS)×

(
1 + RF

RG

)
(2.2)

where

• k = 1.3806488 ×10−23 m2kgs−2K−1

• T = temperature in Kelvins

Note that in this model, both the current noise and the resistor noise are considered to be
negligible.

Figure 2.1: Simplified Noise Model
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1 Signal-Chain Considerations

1.1 Input Noise

Starting with the traditional gain-bandwidth product (GBWP), where the product of the gain and the
bandwidth is constant for a voltage-feedback amplifier (as shown in Equation 1), a quick survey of
nonunity gain stable amplifiers that achieve the highest possible GBWP and low noise yields the results
shown in Table 1.

(1)

Table 1. High GBWP Product and Low-Noise Devices

Part Number Input Voltage Noise Density (nV/√Hz) GBWP (MHz)

OPA847 0.85 3900

OPA846 1.1 1800

LMH6629 0.69 3900

Note that FET input devices have not been considered here because the input voltage noise tends to be
high, while input current noise is low. Because low value resistors are used to minimize noise contribution,
the low input bias current of a FET amplifier is not needed here; only relatively low input impedance
voltage sources are considered.

1.2 Noise Considerations

Consider using a noninverting amplifier architecture, allowing its input impedance to be matched to any
source impedance as well as minimizing system noise. Also at high-gain, the output voltage noise density
can be approximated as shown in Equation 2:

where
• k = 1.380658 × 10–23

• T = temperature in kelvins (2)

Note that in this model, both the current noise and the resistor noise are considered negligible.

Figure 1. Simplified Noise Model
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The SNR for a such a configuration is shown in equation 2.3.

SNR(dB) = 20× log
(

Vorms

eo ×
√
NPWB

)
(2.3)

where NPBW = the noise power bandwidth of the stage. Each stage amplifies the noise from
the previous stage and adds its own noise. For two stages, the result is shown in equation
2.4.

e2
o = e2

o1 +
(
e2

o1 ×G2
2

)
+ e2

o2 (2.4)

e2
o = e2

o1 × (1 +G2
2) + e2

o2 (2.5)
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where eo, eo1 and eo2 are the output voltage noise densities in nV√
Hz

of the total system, the
first stage and the second stage, respectively.

Also, in order to maximize SNR, additional RC filters can be added between the stages.

The total gain equals the sum (in dB) or product (in V
V ) of the gain of each stage as shown

in

Gtot

[
V

V

]
= G1

[
V

V

]
×G2

[
V

V

]
× ...×Gn

[
V

V

]
(2.6)

Gtot [dB] = G1 [dB] +G2 [dB] + ...+Gn [dB] (2.7)

2.3 Following Stages

Since the noise of the first stage is the limiting factor from a noise perspective, any stage other
than the first stage does not require very low noise. The entire current-feedback amplifier
portfolio is now available for selection. Table 2.2 provides a selection of amplifiers suited for
both high gain and high bandwidth applications.

Table 2.2: Current Feedback OP-Amps combining high gain with high BW

Part Number Gain at BW [V/V] BW [MHz] Comment
OPA683 100 35 Lowest power solution
OPA684 100 70 Highest equivalent GBWP
OPA695 16 350 Highest BW solution

Note that either inverting or non-inverting gain circuits can be considered, depending on the
amplifier and the desired bandwidth. The OPA695 achieves lower noise in an inverting configu-
ration whereas the OPA683 and OPA684 achieve lower noise in the non-inverting configuration.
Because we are set to achieve high gain on a single stage, the gain resistor can be as low as
10 Ω. In an inverting topology, this setting can place an additional constraint on the driving
stage. In practice, keep the gain resistor between 10 Ω and 50 Ω and do not exceed 1.5 kΩ
for the feedback resistor. Remember that the frequency response is limited by the feedback
resistor (RF ) and the feedback capacitor (CF ) pole - there always will be a parasitic capacitor
as a result of the component layout, and so forth.

The following sections of this design guide focus on output offset voltage and stability issues.
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3 Output Offset Voltage and Stability Considerations

3 Output Offset Voltage and Stability
Considerations

In the previous sections, this design guide discussed signal chain considerations to match
required gain and bandwidth while maintaining sufficient SNR. Two issues remain to make
this circuit easily implementable:

1. DC accuracy requirements

2. Amplifier power supply rejection ratio (PSRR)

3.1 Output Offset Voltage

Since very high gains are targeted, any DC error in the first or even the second stage can prove
fatal to any implementation. The simplest way to circumvent the output offset voltage is to
make sure that the DC gain of each stage is unity. Adding an AC coupling capacitor in series
with the gain resistor solves this issue. Care must be taken when specifying the capacitor
value. This will be discussed later in the simulation section.

3.2 Power Supply Rejection Ratio (PSRR)

Figure 3.1: Operational Amplifier Emitter Output Stage
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2 Implementation and Stability Considerations

In the first section, this application report discussed signal-chain considerations to match required gain
and bandwidth while maintaining sufficient SNR. Two issues remain to make this circuit easily
implementable: the dc accuracy requirements and amplifier power-supply rejection ratio (PSRR).

2.1 Output Offset Voltage

The gain can be very large; therefore, any dc error in the first or even the second stage can prove fatal to
any implementation. Care must be taken to make sure that the output offset voltage of the multistage
amplifier is sufficient. AC-coupling, or making sure that the dc gain is in unity, is the simplest approach.
(Implementing a dc-feedback loop is another option, but is beyond the scope of this discussion.)

2.2 Power-Supply Rejection Ratio (PSRR)

As a result of the high gain, the signal in the load creates some disturbance in the power supply, as
shown in Figure 2. However, this disturbance does not appear in the simulation unless the line regulation
of a nonideal power supply is implemented.

Figure 2. Operational Amplifier Emitter Output Stage

Such disturbance is seen by the first stage, and if the PSRR of the first amplifier is insufficient at the
frequency of interest, the disturbance finds its way into the signal path, resulting in oscillations.

Preventing these oscillations requires careful planning in regards to the power supply. The power supply is
connected directly to the last amplifier of the high-gain signal chain. From this last amplifier to the previous
one, an inductor is placed in series in the power supply path. This inductor combined with the local bypass
capacitor forms a low-pass filter and attenuates the disturbance. In the implementation shown, inductors
are placed only in the positive supply.

A positive feedback loop created in the supply can happen on both positive and negative supplies;
therefore, it may be necessary to implement this scheme on both supplies.

Additionally, a single operational amplifier must be used; oscillation occurs when using dual, triple, or quad
amplifiers because they share the power supplies internally.
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The output current flows through the output stage transistor and is originating from the power
supply, as expected. If the supply is ideal and has constant low impedance over frequency,
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Figure 3.2: Impedance vs. Frequency for a 100 nF multilayer ceramic chip capacitor [TDK13]

Commercial Grade ( General (Up to 50V) )
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L 1.60mm +/-0.1mm
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T 0.80mm +/-0.1mm
B 0.20mm Min.
G 0.30mm Min.
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1E (25Vdc)

100nF
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no disturbance will appear. However, the impedance of the supply will vary over frequency,
either due to the limited bandwidth of a supply such as a LDO or due to the limitations of
the bypass capacitor maintaining constant impedance over frequency. Figure 3.2 shows the
impedance over frequency plot for a 100 nF multilayer ceramic chip capacitor.

It is possible to minimize such effect over frequency by putting capacitors of different technology
and values in parallel. However, no matter how good the power supply regulator or the
bypassing implementation, the impedance of the supply will have ripples upon which the load
current will create a small signal riding on the power supply. This signal is referred to as
disturbance in the following discussion.

However, this disturbance does not appear in the simulation unless the line regulation of a
non-ideal power supply is implemented.

Such disturbance is seen by the first stage and if the PSRR of the first amplifier is insufficient
at the frequency of interest, the disturbance finds its way into the signal path and will be
amplified by the high gain of the following stages, eventually resulting in oscillations.

Preventing these oscillations requires careful planning in regards to the power supply. The
power supply is connected directly to the last amplifier of the high gain signal chain. From
this last amplifier to the previous one, an inductor is placed in series in the power supply path.
This inductor combined with the local bypass capacitor forms a low pass filter that attenuates
the disturbance. A positive feedback loop created in the supply can happen on both positive
and negative supplies. Therefore, this needs to be implemented on both supplies.

Additionally, a single operational amplifier package must be used. Since dual, triple or quad
amplifier packages share the power supplies internally, oscillations may occur since no filtering
can be done externally.
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4 Simulations

The schematic shown in figure 4.1 reflects all the items discussed in the previous sections and
shows a possible implementation for a +5V single supply, providing a voltage gain of approx.
120,000 V/V. Please note that a single +5V supply was used in simulation, therefore no
inductors are present on the negative supply side.

Following is a short summary of the items discussed in the previous sections:

• Very low input voltage noise density amplifier on the first stage (LMH6629)

• High gain, high bandwidth amplifiers on the following stages (OPA684)

• AC coupling capacitors in series with the gain resistors to ensure DC gain equals unity
(C1,C2,C3)

• Inductors in the power supply line between the stages to implement LC filters using the
bypass capacitor, creating low pass filters to attenuate the disturbances in the power
supply line

• RC filters between the stages to increase SNR

Figure 4.1: Final Simulation Schematic
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Figures 4.2 and 4.3 show simulated frequency responses with different gain AC coupling ca-
pacitor values. To ensure that the flat band is as wide as possible, select high capacitor values.
On the stages featuring the current feedback OPA684 amplifier, the gain resistor shields the
capacitor from the low impedance non-inverting input of the amplifier.

Figure 4.4 shows the simulated SNR.
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5 Circuit Implementation and Board Design

Figure 4.2: Simulated Frequency Response, CAC−GAIN = 10nF
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Figure 4.3: Simulated Frequency Response, CAC−GAIN = 10µF
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Figure 4.4: Simulated SNR, CAC−GAIN = 10µF
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5 Circuit Implementation and Board Design

Figure 4.5: Schematic of the implemented High-Gain, High-Bandwidth Circuit
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5 Circuit Implementation and Board Design

5 Circuit Implementation and Board Design

Simulations are only proof of concepts and should be considered with caution. Therefore, a
dedicated board for this circuit was designed to verify functionality.

The board circuit is shown in figure 4.5. Note there are two principal distinctions between the
schematic simulated and its implementation:

1. The power supplies are bipolar

2. The inductors on the negative supply are explicitly shown here

The layout has three layers. The top layer has most of the circuitry, the middle layer contains
the power supplies and the bottom layer is used for the ground plane as well as component
placement.

In order to minimize stray capacitance, no plane was present on the inverting input pins of any
amplifier or at the output. The OPA684, a current feedback amplifier with very low output
impedance on its inverting pin, is very sensitive to stray capacitance on that node.

The figures 5.1 through 5.3 show the three layers of the board.
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5 Circuit Implementation and Board Design

Figure 5.1: PCB - Top Layer

Figure 5.2: PCB - Mid Layer
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Figure 5.3: PCB - Bottom Layer
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6 Evaluation

Evaluating the board required finding an arbitrary waveform generator (ARB) with sufficiently
low signal amplitude control and noise (please keep in mind the very high voltage gain of
120,000 V/V). A suitable ARB could not be found in the lab. Therefore, a steep band-pass
filter eighth order) was connected to the ARB followed by two 40-dB attenuation pads to
achieve the desired 20 µVP P signal generation.

The output was evaluated using a standard oscilloscope. Averaging was used to extract the
signal from the noise floor. Figures 6.1 through 6.3 show the output signal for a 1, 5 and 10 MHz
sine wave input, respectively. The input signal amplitude was 20 µVP P for all measurements.
Looking at the 1MHz output signal plot, one can clearly see the distortion, whereas the 5 MHz
and 10 MHz output plots look much cleaner. This can be explained by looking at the frequency
response (figure 6.5). For the 1 MHz signal, HD2 and HD3 are still within the flat band. For 5
and 10 MHz, HD2 and HD3 are attenuated by the frequency response of the circuit and thus
filtered out.

Please also note that equipment limitations due to signal generation (ARB) as well as signal
evaluation (scope, network analyser) were experienced during evaluation. Noise issues in com-
bination with the 20 µVP P input signal and the very high gain (120,000 V/V) represented the
main difficulty. Extracting the output signal from the noise floor presented a challenge to the
scope’s ADC-s, especially in respect to resolution. Please take the amplitude values in the fol-
lowing figures with a grain of salt. When it comes to amplitude values, the frequency response
measured by the network analyser should be more accurate (see figures 6.4 and 6.5). However,
even though averaging was used on the network analyser too, noise was still an issue.

The frequency response was measured using a network analyser. Using its internal attenuator,
it was possible to set the test signal amplitude to a suitable level (no clipping / compression
at the output). Figures 6.4 and 6.5 show the frequency response for 10 nF and 10 µF gain
AC-coupling caps, respectively.

7 Conclusion

This design guide described the process and factors of developing a very high voltage gain,
multi-stage design and explained its functionality and limitations. Knowing the important
factors and the limitations, it should be possible to adjust this circuit to a given application
while keeping in mind the limitations (especially the limited SNR).
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7 Conclusion

Figure 6.1: Measured Output Signal, Sine Input, fIN = 1MHz, VIN = 20µVP P , CAC−GAIN =
10µF
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Figure 6.2: Measured Output Signal, Sine Input, fIN = 5MHz, VIN = 20µVP P , CAC−GAIN =
10µF
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Figure 6.3: Measured Output Signal, Sine Input, fIN = 10MHz, VIN = 20µVP P ,
CAC−GAIN = 10µF
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7 Conclusion

Figure 6.4: Measured Frequency Response, 10kHz-100MHz, CAC−GAIN = 10nF
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Figure 6.5: Measured Frequency Response, 10kHz-100MHz, CAC−GAIN = 10µF
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