
C2000™ Position Manager SinCos Library

User's Guide

Literature Number: SPRUI54
January 2016

2 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

Contents

1 Introduction... 4
1.1 The SinCos Transducer ... 4
1.2 System Description .. 4
1.3 SinCos Implementation Details... 6

2 Installing the PM_sincos Library .. 10
2.1 PM_sincos Library Package Contents ... 10
2.2 How to Install the PM_sincos Library .. 10

3 Module Summary ... 10
3.1 PM_sincos Library Functions ... 10
3.2 Data Structures ... 11
3.3 Details of Function Usage ... 12

4 Using the PM_sincos Library ... 14
4.1 Adding SinCos Lib to the Project ... 14
4.2 Steps for Initialization .. 16
4.3 Resource Requirements ... 18

5 Test Summary.. 18
5.1 Accuracy Assessment.. 19
5.2 Noise Assessment.. 19

6 FAQ .. 20

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com

3SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

List of Figures

List of Figures
1 Industrial Servo Drive With SinCos Position Encoder Interface ... 5
2 Principle of Operation ... 5
3 SinCos Implementation Diagram Using TMS320F28379D... 7
4 SinCos Fine Angle Calculation... 7
5 SinCos Quadrature Counter and Mode Control ... 8
6 Angle Calculation .. 8
7 Compiler Options for a Project Using PM Sincos Library ... 14
8 Adding PM_sincos Library to the Linker Options in Code Composer Studio™ (CCS) Project 15
9 Adding the IQ Math Library to the Linker Options in CCS Project... 16
10 Typical Angular Difference ... 19
11 Measured Angle .. 19

List of Tables
1 Mode Selection... 9
2 PM_sincos Library Functions ... 10
3 Module Interface Definition.. 11
4 Summary of Instructions... 12
5 F2837xD MCU Resources .. 18

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

4 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

C2000, Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

User's Guide
SPRUI54–January 2016

C2000™ Position Manager SinCos Library

This user's guide describes a software library module that conditions the SinCos signals to determine the
angle. The module is part of the C2000 Position Manager software library.

1 Introduction

1.1 The SinCos Transducer
The “SinCos” transducer is a high precision angle measurement device widely used in industrial motor
control and motion control. The transducer delivers three differential analogue outputs: two sinusoidal
signals in quadrature phase, and an index signal. There are typically a few thousand sinusoidal cycles for
each mechanical revolution of the encoder shaft. The index signal appears only once per mechanical
revolution and defines an absolute position of the shaft.

1.2 System Description
Industrial servo drives require highly accurate, reliable, low-latency position measurement for feedback
control. Among the many types of angle transducer available today, the “SinCos” transducer delivers
exceptional accuracy and robustness.

In principle, the SinCos transducer is a rotational sensor that produces a pair of differential analogue
outputs, which can be used to measure angle. Both outputs are sinusoidal, and held in quadrature
relationship such that as the shaft turns the signal pair describe sine and cosine functions of angle.

In conventional digital quadrature encoders, angle information is obtained by counting the edges of a pair
of quadrature pulses; angular resolution being fixed by the number of pulses per mechanical revolution. In
SinCos transducers, the angular measurement is obtained by a trigonometric computation using the
unique relationship between the sine and cosine inputs. This allows the absolute angle within each
quadrature interval to be determined, greatly increasing measurement precision.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

-1

0

1

�

A

B

Motor SinCos
position
encoder

Connector

Cable Encoder
Power
Supply

A

B

I

F28377D

A
na

lo
g

S
ub

-S
ys

te
m

PM
SinCos
Library

Signal Conditioning Board

www.ti.com Introduction

5SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Figure 1. Industrial Servo Drive With SinCos Position Encoder Interface

It is both impractical and unnecessary to maintain high angular precision at high speed. Therefore, at high
motor shaft speeds the SinCos algorithm need only count the number of complete sinusoidal revolutions
to determine a lower precision angle measurement. Typically, this is done by converting the analogue
signals into a pair of quadrature square waves, and counting edges in a similar way to the conventional
quadrature encoder. The SinCos library does this using a pair of analogue comparators that compare
each of the incoming sinusoids with an adjustable threshold representing the zero crossing point. The
comparator outputs correspond to the sign of each sinusoid and the resulting digital signals are similar to
those produced by a quadrature encoder. The upper plots in Figure 2 show the ideal sinusoidal inputs
after passing through differential amplifiers. The lower plots show the quadrature outputs from the
comparator pair.

Figure 2. Principle of Operation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

Introduction www.ti.com

6 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

In addition to the sine and cosine signals, many SinCos transducers deliver an “index” pulse once each
mechanical revolution. The index pulse is similar to that produced by the quadrature encoder; its’ purpose
being to provide a datum so that absolute anglular position can be determined. The index pulse causes
the quadrature count either to be reset to zero, or loaded with a pre-determined maximum count,
depending on the direction of rotation.

1.3 SinCos Implementation Details
The internal analogue sub-system of the F2837x is ideal for interfacing to SinCos transducers. The
presence of multiple ADCs which can be triggered from the same source allows simultaneous samples of
both sine and cosine channels to be taken. In addition, there are up to eight pairs of analogue
comparators, each with its own programmable threshold voltage. These can be used to generate digital
quadrature waveforms from the sine and cosine inputs, which can be fed to one of the internal QEP
(Quadrature Encoder Peripheral) modules where coarse angle and speed measurement takes place.

1.3.1 Hardware Interface and Connections
The sincos library expects three inputs signals: sine, cosine, and index. The sincos transducer typically
delivers these as differential output signals, each of which must be connected to a differential amplifier to
produce a single ended signal with appropriate offset and scaling such that the signal lies within range of
the ADC inputs. For implementation details, see the IDDK schematics (delivered in the controlSUITE
download).

Each signal enters the device on one of the AIO pins. The sine and cosine inputs must be taken to ADC
inputs in such way that they may be sampled simultaneously. On the F2837x device, this is acheved by
connecting them to separate physical ADCs. Note that version 1.0 of the library expects the ADCs to be
configured in 12-bit mode. ADC channels must be selected so that the input signals are also connected to
separate internal comparators. The index signal does not need to be sampled, so it is immaterial to which
physical ADC or ADC channel it is connected, however, it must be connected to a separate internal
comparator sub-system.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54
https://www.ti.com/tool/controlsuite

Averaging
Filter 1

Min/Max
Capture

Gain & Offset
Calculation

Reset Trigger

Correction
& Float Conversion

Averaging
Filter 2

Min/Max
Capture

Gain & Offset
Calculation

Correction
& Float Conversion

Reset

sine

cosine

Trigger

Fine Angle
Calculation Fine angle

sincorr

coscorr

calFlg

+

-

ADC-C

+

-

ADC-D

+

-OFFS-A

QEP

+

-OFFS-B

+

-OFFS-I

A

B

I

+

-

CMPSS-4

CMPSS-7

CMPSS-8

SINE

COSINE

INDEX

GPIO54

GPIO55

GPIO15

GPIO14

AD-C0

AD-D0

AD-D2

GPIO59

SIN

COS

QEPPOS

QEPSPD

GPIO57

www.ti.com Introduction

7SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Figure 3 shows the interconnections on the IDDK to interface with the SinCos transducer. GPIO pin
numbers indicated in the diagram correspond to the TMDXIDDK379D board

Figure 3. SinCos Implementation Diagram Using TMS320F28379D

In this example, the comparator outputs are connected via the output X-bars to separate GPIO pins. From
each pin, a hardware connection is made to an input pin for one of the internal QEP peripherals. Sine,
cosine, and index must be connected to QEPA, QEPB, and QEPI, respectively.

1.3.2 Software Implementation Details
Calculation of transducer shaft angle is performed in the PM_sincos_calcAngle() function in the SinCos
library. Figure 4 and Figure 5 are equivalent software block diagrams of this function. Labels in blue
indicate elements in the SinCos interface structure.

Figure 4. SinCos Fine Angle Calculation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

I I I I I Q Q Q Q

31 1530 14

...

0

...

Coarse Angle Fine Angle

Quadrant Counter

iTheta

fTheta

sincorr

coscorr

Speed
Comparator

qepspd mode

qepcnt

qcount Calibration
Manager

calFlg

Fine angle

Angle Source
Selector

QEP Module

A

B

I

mchg01 mchg12

+

+

Introduction www.ti.com

8 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Incoming sine and cosine data are simultaneously sampled and converted by two ADCs. Each data
stream is then filtered by a four-point moving averaging filter to reduce the influence of random noise.
These filtered data are compared against stored records such that maximum and minimum externals are
captured over a pre-defined number of quadrature edges.

Once the shaft has moved through the required number of quadrature cycles, an internal calibration flag
causes the offset and gain correction coefficients for each channel to be computed and the data records
reset. On start-up (prior to availability of the first extremal set), default gain and offset values are applied.
The gain and offset correction blocks apply the coefficients to each incoming data point, and it is these
corrected data streams that are used for calculation of fine angle.

Figure 5. SinCos Quadrature Counter and Mode Control

The corrected data is also used to determine quadrature edge count at low speed. The accumulated edge
count is added to the fine angle to obtain precise shaft position. The quadrature edge count is also used
as a trigger for application of the calibration coefficients. A calibration manager decides when to apply the
new calibration coefficients and sets “calFlg” accordingly. The user code may inspect “calFlg” to decide
when to update offsets in the comparator subsystem (see Section 4.2).

Shaft speed information is provided by the QEP module. A software speed comparator determines which
operating mode takes effect based on the instantaneous measured speed and two user selectable speed
thresholds. The source of the angle measurement delivered by the SinCos module depends on the
operating mode.

1.3.2.1 Angle Calculation
Angle information is delivered in two formats: IQ15 and floating-point. Both are available as elements in
the SinCos interface structure (‘itheta’ and ‘ftheta’, respectively). In IQ15 format, the data is separated into
integer and quotient (fractional) parts in the same 32-bit data word.

Figure 6. Angle Calculation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com Introduction

9SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

The integer part represents the “coarse” angle, and is simply the quadrature edge count. The count is
taken either from the software quadrature edge detector (modes 0 and 1) or from the QEP position
counter (mode 2).

The quotient part corresponds to “fine” angle; computed using an arctangent of the incoming sine and
cosine data. The result is the interpolated per-unit angle between quadrature edges that is concatenated
with the coarse angle to produce a 32-bit angular data point. The floating-point angle is obtained by an
IQ15 to float conversion of the above data.

1.3.2.2 Mode Selection
The PM_sincos angle calculation software is designed to operate at a fixed rate. Typically, the
computation would be called from an interrupt service routine running at around 10 – 20 kHz. The angle
calculation runs in one of three modes depending on the speed of the transducer shaft.

Table 1. Mode Selection

Mode Shaft Speed Coarse Angle Fine Angle Calibration
0 Low Software Software Yes
1 Medium Software Software No
2 High QEP None No

At low speed (modes 0 and 1), quadrature edge counting is performed in software using the corrected
sine and cosine readings. Angle calculation is based entirely on measurements of the sine and cosine
waveforms. The upper and lower bounds of each channel are captured over multiple electrical cycles, and
from this the electrical gain and offset are computed. This gain and offset information is used to calibrate
the incoming data streams. The corrected channel data are used for angle calculation and for
determination of the quadrant.

As shaft speed increases, there is a point beyond which insufficient data points are available in each
electrical cycle to ensure accurate calibration. Therefore, at higher speeds (modes 1 and 2), re-calibration
is disabled and the coefficients are no longer updated.

At high speed (mode 2), accurate quadrant detection using the measured sine and cosine information is
no longer feasible. Angular information comes entirely from the QEP which receives quadrature pulse
streams and an index reference from the internal comparator sub-systems. Interpolation between
quadrature edges to determine fine precision angle is not performed in this mode and the fine angle is
always zero.

Speed information is always determined from the QEP, which continuously monitors the number of
quadrature edges in a fixed time interval regardless of which mode is active. The transition speeds
between modes are defined by two elements in the SinCos software structure (mchg01 and mchg12) and
are user adjustable.

1.3.2.3 Error Detection
Version 1 of the SinCos library implements basic error detection. Errors are latched in the integer “status”
element in the interface C structure. The user code may write to this element at any time to set or reset
bits. The allocation of bits within the status element is as follows.

Bit 0 QEP phase or counter error. This bit latches the setting of either the PHE or PCE bits in the
QFLG register of the selected QEP module.

Bit 1 Loss or one or both input signals. This bit is set (in mode 0 only) if the calculated range of either
sine or cosine channel falls below a fixed minimum threshold of 100. This bit implies either a very
low gain channel or loss of one or both input signals.

Bit 2 Relative gain out of bounds. This bit is set (in mode 0 only) if the amplitude of the cosine channel
gain relative to that of the sine channel exceeds ±5%.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

Installing the PM_sincos Library www.ti.com

10 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Bit 3 Quadrature phase error. This bit is set (in modes 0 and 1 only) if an illegal quadrature edge
transition is detected – such that, if both inputs change sign together. Changes in calibration
coefficients can generate spurious transitions at higher speeds, so if this error appears it may be
an indication that the mode 0-1 threshold is too high. Phase error in mode 2 is captured in bit 0.

Bit 4 Interrupt over-lap error. This bit is set if a call to the SinCos calculation routine is called before the
previous call has been completed. This can be an indication of insufficient CPU bandwidth.

2 Installing the PM_sincos Library

2.1 PM_sincos Library Package Contents
The PM_sincos Library consists of the following components:
• Header files and software library for the SinCos interface
• Documentation – PM_sincos Library User Guide
• Example project showing the SinCos interface implementation on TMDXIDDK379D hardware

2.2 How to Install the PM_sincos Library
<base> install directory is
C:\ti\controlSUITE\libs\app_libs\position_manager\vX.X

The following sub-directory structure is used:

<base>\Doc Documentation
<base>\Float Contains implementation of the library and corresponding include file
<base>\Examples Example using PM_sincos library

3 Module Summary
This section describes the contents of PM_sincos_lib.h – the include file for the PM_sincos library.

3.1 PM_sincos Library Functions
The PM_sincos library consists of the following functions that enable the user to interface with encoders.
Table 2 lists the functions existing in the PM_sincos library and a summary of cycles taken for execution.
Cycle count is measured including C function call overhead.

Table 2. PM_sincos Library Functions

Name Description
CPU

Cycles Type
PM_sincos_calcAngle This function computes the shaft angle based on the

sine and cosine information. The data is available in
the SINCOS structure in both IQ15 and floating-point
format.

642 Run time

PM_sincos_updateCalData This function updates the offset and gain corrections
used in the above function with values computed in the
most recent incoming data. The function is run
periodically at low rate to correct for temperature drift
and other variations.

666 Run time

PM_sincos_initLib This function initializes the elements of the SINCOS
structure to default values. It also resets the
measurement filter buffers used for calibration.

521 Initialization time

PM_sincos_reset This function resets those elements of the SINCOS
structure used for angle calibration. It is useful for “on-
the-fly” initialization; for example, if the transducer
reaches a datum point and measurement should re-
start from a known state.

77 Run time

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com Module Summary

11SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

3.2 Data Structures
The PM Sincos library defines the SINCOS data structure as below:
/* SinCos transducer struct */
typedef volatile struct {

int initFlg; // [1] initialisation & first pass-through complete
int calFlg; // [2] first calibration complete
unsigned int sindata; // [3] ch0 - raw data
unsigned int cosdata; // [4] ch1 - raw data
unsigned int ch0offs; // [5] ch0 offset as integer
unsigned int ch1offs; // [6] ch1 offset as integer
_iq15 sinoffs; // [7] ch0 offset as IQ
_iq15 cosoffs; // [8] ch1 offset as IQ
_iq15 singain; // [9] ch0 gain (fixed at 1)
_iq15 cosgain; // [10] ch1 gain (relative to singain)
_iq15 sincorr; // [11] ch0 after static correction
_iq15 coscorr; // [12] ch1 after static correction
_iq15 qcount; // [13] quadrature count from angle
_iq15 qmaxpos; // [14] maximum position count
int qdir; // [15] rotation direction: 0 = CW, 1 = CCW.
int qcflg; // [16] calibration update ready flag
long qepcnt; // [17] raw QEP count
long qepspd; // [18] capture counter from QEP
int mode; // [19] operating mode (0 = normal, 1 = no cal., 2 = coarse

only)
long mchg01; // [20] speed transition between modes 0 <-> 1

long mchg12; // [21] speed transition between modes 1 <-> 2
_iq15 itheta; // [22] encoder angle in fixed-point
float ftheta; // [23] encoder angle in float-point
int status; // [24] sincos status & error code
volatile struct EQEP_REGS *qep; // [25] pointer to QEP register structure

} SINCOS;

Table 3. Module Interface Definition

Module Element Description Type
initFlg Initialization status flag. Used to prevent anomalous behavior with un-initialized variables. int

0 – first time execution of PM_sincos_calcAngle().
1 – PM_sincos_calcAngle() has been called at least once.

calFlg First calibration complete flag. See section... int
0 – First calibration incomplete.
1 – First calibration complete.

ch0offs Offset threshold for sine channel DAC in CMPSS. unsigned int
ch1offs Offset threshold for cosine channel DAC in CMPSS. unsigned int
sinoffs Offset correction to sine channel. _iq15
cosoffs Offset correction to cosine channel. _iq15
singain Gain correction to sine channel (fixed at 1.0). _iq15
cosgain Gain correction to cosine channel relative to sine channel. _iq15
sincorr Since channel data after static correction _iq15
coscorr Cosine channel data after static correction _iq15
qcount Software quadrant count in modes 1 & 2. _iq15
qmaxpos Maximum encoder count – “qcount” will be reset to this value on under-flow. _iq15
qdir Count direction flag (current measurement): int

0 – CW
1 – CCW

qcflg Calibration ready flag. Indicates to host software that new gain/offset calibration data is
available. Host software should poll this flag and respond by calling the
PM_sincos_updateCalData() function.

int

0 – no new calibration data.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

Module Summary www.ti.com

12 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Table 3. Module Interface Definition (continued)
Module Element Description Type

1 – new calibration data ready.
qepcnt Quadrature edge counter from QEP long
qepspd Shaft speed indication from QEP long
mode Mode ID. See section... int

0 – low speed with calibration
1 – low speed, calibration disabled
2 – high speed, no fine angle

mchg01 Speed threshold between modes 0 and 1. int
mchg12 Speed threshold between modes 1 and 2. int
itheta Angle position measurement in _IQ15 format. _iq15
ftheta Angle position measurement in floating point format. float
status Error code: int

Bit 0 = QEP phase or counter error
Bit 1 = Loss of one or both input signals
Bit 2 = Relative gain out of bounds
Bit 3 = Quadrature transition error

qep Pointer to QEP register structure pointer

3.3 Details of Function Usage
Detailed description of various library functions in PM_sincos library and their usage can be found in the
following sections.

Table 4. Summary of Instructions
Title .. Page

PM_sincos_calcAngle — ... 12
PM_sincos_updateCalData — ... 13
PM_sincos_initLib — .. 13
PM_sincos_reset — .. 13

PM_sincos_calcAngle

Description This function computes the mechanical shaft angle in scaler per-unit. The angle is
available in both IQ15 and floating-point format in the “itheta” and “ftheta” elements,
respectively, in the SINCOS structure.

Definition int PM_sincos_calcAngle(*p);

Parameters Input: *p: A pointer to an instance of the SINCOS structure.

Return: An integer representing the status code.

Usage PM_sincos_calcAngle(&mySincos);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com PM_sincos_updateCalData —

13SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

PM_sincos_updateCalData

Description Calculates the gain and offset calibration coefficients and updates active values in the
SinCos structure.

This function takes the accumulated max/min values for each of the incoming data
streams and computes the difference and mid-point. From this information, offset and
gain corrections for each input channel are computed. Offsets are updated in “sinoffs”
and “cosoffs” structure elements, and a relative gain correction is applied to the
“cosgain” element. The internal max/min data records for each channel are reset at the
end of the function.

Definition int PM_sincos_updateCalData(SINCOS *p);

Parameters Input: *p: A pointer to an instance of the SINCOS structure.

Return: An integer representing the current status code.

Usage PM_sincos_updateCalData(&mySincos);

PM_sincos_initLib

Description This function sets the elements of the specified SINCOS data structure to their default
values. The function clears all data from both input filters, and initializes the selected
QEP peripheral. Typically, this function would be called once, prior to using the library.

Definition void PM_sincos_initLib(SINCOS *p);

Parameters Input: *p: A pointer to an instance of the SINCOS structure.

Return: None

Usage PM_sincos_nitLib(&mySincos);

PM_sincos_reset

Description This function resets the dynamic SINCOS variables to default values as follows:

Name Reset Value Description
calFlg 0 Force new initial calibration
QPOSCNT 0x00000000 QEP hardware position counter (via qep struct element)
qepcnt 0 QEP counter
qepspd 0 Software speed
mode 0 Operating mode
qcount 0 Software quadrature count
itheta _IQ15(0.0) Fixed-point angle
ftheta 0.0f Floating-point angle
status 0 SinCos status

Definition void PM_sincos_reset(SINCOS *p);

Parameters Input: *p: A pointer to an instance of the SINCOS structure.

Return: None

Usage PM_sincos_reset(&mySincos);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

Using the PM_sincos Library www.ti.com

14 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

4 Using the PM_sincos Library

4.1 Adding SinCos Lib to the Project
1. Include library in {ProjectName}-Includes.h.

Add the PM_sincos header file to your project:
#include "PM_sincos_lib.h"

2. Add the PM_sincos library path in the include paths under Project Properties → CCS Build → C2000
Compiler → Include Options.
Path for the library:
C:\ti\controlSUITE\libs\app_libs\position_manager\v01_00_00_00\sincos\Float\lib

Figure 7. Compiler Options for a Project Using PM Sincos Library

NOTE: Exact location may vary depending on where controlSUITE is installed and which other
libraries the project is using.

3. Link the SinCos Library (PM_sincos.lib) to the project.
Path for the library:
C:\ti\controlSUITE\libs\app_libs\position_manager\v01_00_00_00\sincos\Float\lib

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com Using the PM_sincos Library

15SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Figure 8 is a snapshot that shows the changes to the linker options that are required to include the
PM_sincos library.

Figure 8. Adding PM_sincos Library to the Linker Options in Code Composer Studio™ (CCS) Project

NOTE: Exact location may vary depending on where controlSUITE is installed and which other
libraries the project is using.

4. Include the IQ math header file to your project:
#include "IQmathLib.h"

5. Link the IQ math library (IQmath.lib) to the project:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

Using the PM_sincos Library www.ti.com

16 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Figure 9. Adding the IQ Math Library to the Linker Options in CCS Project

4.2 Steps for Initialization
The following steps are needed for initialization and proper functioning of SinCos library functions. For
more details, see the example provided along with the library.
1. Add the SinCos header file to {ProjectName}-Main.c.

#include "sincos.h"

2. Create and add module structure to {ProjectName}-Main.c for SinCos interface.
SINCOS mySincos;

3. Initialize GPIO pins. This is done in the source file “sincos.c” that can be added to the CCS project.
GPIO_SetupPinMux(14, GPIO_MUX_CPU1, 6);
GPIO_SetupPinMux(15, GPIO_MUX_CPU1, 6);
GPIO_SetupPinMux(59, GPIO_MUX_CPU1, 5);

// configure GPIOs 54 & 55 for QEP input
GpioCtrlRegs.GPBGMUX2.bit.GPIO54 = 1;
GpioCtrlRegs.GPBGMUX2.bit.GPIO55 = 1;
GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 1;
GpioCtrlRegs.GPBMUX2.bit.GPIO54 = 1;
GpioCtrlRegs.GPBMUX2.bit.GPIO55 = 1;
GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 1;

GpioCtrlRegs.GPBQSEL2.bit.GPIO54 = 2;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com Using the PM_sincos Library

17SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

GpioCtrlRegs.GPBQSEL2.bit.GPIO55 = 2;
GpioCtrlRegs.GPBQSEL2.bit.GPIO56 = 2;
GpioCtrlRegs.GPBQSEL2.bit.GPIO57 = 2;
GpioCtrlRegs.GPBCTRL.bit.QUALPRD3 = 3;

4. Initialize ADCs as required.
AdcSetMode(ADC_ADCC, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);
AdcSetMode(ADC_ADCD, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);

// configure ADCC
AdccRegs.ADCSOC0CTL.bit.CHSEL = 14;
AdccRegs.ADCSOC0CTL.bit.TRIGSEL = 5;
AdccRegs.ADCSOC0CTL.bit.ACQPS = ADC_AQPS - 1;

// configure ADCD
AdcdRegs.ADCSOC0CTL.bit.CHSEL = 0;
AdcdRegs.ADCSOC0CTL.bit.TRIGSEL = 5;
AdcdRegs.ADCSOC0CTL.bit.ACQPS = ADC_AQPS - 1;

// Power up the ADCs
AdccRegs.ADCCTL1.bit.ADCPWDNZ = 1;
AdcdRegs.ADCCTL1.bit.ADCPWDNZ = 1;
DELAY_US(1000);

5. Initialize the comparator subsystems.
// configure CMPSS4 for sine input
Cmpss4Regs.COMPCTL.bit.COMPDACE = 1;
Cmpss4Regs.COMPCTL.bit.COMPHSOURCE = 0;
Cmpss4Regs.COMPDACCTL.bit.SELREF = 0;
Cmpss4Regs.COMPDACCTL.bit.SWLOADSEL = 0;
Cmpss4Regs.COMPDACCTL.bit.FREESOFT = 3;
Cmpss4Regs.DACHVALS.bit.DACVAL = 2048;
Cmpss4Regs.COMPHYSCTL.bit.COMPHYS = 0;

// Configure Digital Filter
Cmpss4Regs.CTRIPHFILCLKCTL.bit.CLKPRESCALE = 0xF;
Cmpss4Regs.CTRIPHFILCTL.bit.SAMPWIN = 0x8;
Cmpss4Regs.CTRIPHFILCTL.bit.THRESH = 0x5;
Cmpss4Regs.CTRIPHFILCTL.bit.FILINIT = 1;
Cmpss4Regs.COMPCTL.bit.CTRIPHSEL = 2;
Cmpss4Regs.COMPCTL.bit.CTRIPOUTHSEL = 2;

OutputXbarRegs.OUTPUT3MUX0TO15CFG.bit.MUX6 = 0;
OutputXbarRegs.OUTPUT3MUXENABLE.bit.MUX6 = 1;

// configure CMPSS7 for cosine input
Cmpss7Regs.COMPCTL.bit.COMPDACE = 1;
Cmpss7Regs.COMPCTL.bit.COMPHSOURCE = 0;
Cmpss7Regs.COMPDACCTL.bit.SELREF = 0;
Cmpss7Regs.COMPDACCTL.bit.SWLOADSEL = 0;
Cmpss7Regs.COMPDACCTL.bit.FREESOFT = 3;
Cmpss7Regs.DACHVALS.bit.DACVAL = 2048;
Cmpss7Regs.COMPHYSCTL.bit.COMPHYS = 0;

// Configure Digital Filter
Cmpss7Regs.CTRIPHFILCLKCTL.bit.CLKPRESCALE = 0xF;
Cmpss7Regs.CTRIPHFILCTL.bit.SAMPWIN = 0x8;
Cmpss7Regs.CTRIPHFILCTL.bit.THRESH = 0x5;
Cmpss7Regs.CTRIPHFILCTL.bit.FILINIT = 1;
Cmpss7Regs.COMPCTL.bit.CTRIPHSEL = 2;
Cmpss7Regs.COMPCTL.bit.CTRIPOUTHSEL = 2;

OutputXbarRegs.OUTPUT4MUX0TO15CFG.bit.MUX12 = 0;
OutputXbarRegs.OUTPUT4MUXENABLE.bit.MUX12 = 1;

// configure CMPSS 8 for index pulse input

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

Using the PM_sincos Library www.ti.com

18 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

Cmpss8Regs.COMPCTL.bit.COMPDACE = 1;
Cmpss8Regs.COMPCTL.bit.COMPHSOURCE = 0;
Cmpss8Regs.COMPDACCTL.bit.SELREF = 0;
Cmpss8Regs.DACHVALS.bit.DACVAL = 4000;
Cmpss8Regs.COMPHYSCTL.bit.COMPHYS = 2;
Cmpss8Regs.COMPCTL.bit.CTRIPHSEL = 0;
Cmpss8Regs.COMPCTL.bit.CTRIPOUTHSEL = 0;

OutputXbarRegs.OUTPUT2MUX0TO15CFG.bit.MUX14 = 0;
OutputXbarRegs.OUTPUT2MUXENABLE.bit.MUX14 = 1;

6. Assign the QEP structure pointer to a physical module.
mySincos.qep = &EQep2Regs;

7. Initialize the SINCOS structure in the main program code.
PM_sincos_initLib(&mySincos);

8. Add a call to the SinCos calculation routine to the desired interrupt service routine.
PM_sincos_calcAngle(&mySincos);

The ADC results must be read and stored in the “cosdata” and “sindata” structure elements before the
call is made. For details on how this is typically done, see the example program.

9. Add code to modify the comparator offsets following calibration update. The availability of updated
calibration data is indicated using the “qcflg” structure element. An example is shown below.
if (mySincos.qcflg == 1)

{
Cmpss4Regs.DACHVALS.bit.DACVAL = mySincos.ch0offs;
Cmpss7Regs.DACHVALS.bit.DACVAL = mySincos.ch1offs;
mySincos.qcflg = 0;

};

4.3 Resource Requirements
The following resources of the F2837xD MCU are consumed by PM_sincos library (see Figure 3).

Table 5. F2837xD MCU Resources

Resource Name Type Purpose Usage Restrictions
Dedicated Resources

AD-C0 AIO Sine channel input AIO dedicated for SinCos
AD-D0 AIO Cosine channel input AIO dedicated for SinCos
AD-D2 AIO Index input AIO dedicated for SinCos
GPIO15 IO CMPSS-4 high output IO dedicated for SinCos
GPIO14 IO CMPSS-7 high output IO dedicated for SinCos
GPIO59 IO CMPSS-8 high output IO dedicated for SinCos

Configurable Resources
QEP Module and

IOs
One QEP instance to support high speed
mode

Any QEP instance can be chosen. The
module and three corresponding IOs will then
be dedicated for SinCos

Shared Resources
CPU and Memory Module Check CPU and Memory utilization for

various functions
Application to ensure enough CPU cycles and
memory are allocated

5 Test Summary
The SinCos library was tested at Texas Instruments laboratories using the following hardware:
• Industrial Drive Development Kit; TMDXIDDK379D
• Lika encoder, model; HS58S18/17-P9-RM2
• Lika encoder, model; CB59-V-2048/11P12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

www.ti.com Test Summary

19SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

5.1 Accuracy Assessment
Comparative angular measurements were made using the HS58S combined SinCos/BiSS encoder.
Figure 10 shows the typical angular difference between these two encoder types over one full mechanical
revolution. The horizontal axis is shaft angle in degrees; the vertical axis is angular error in degrees.

Figure 10. Typical Angular Difference

The initial error of approximately 0.01° is attributable to the default calibration values used on start-up.
Measurements from the first data point at approximately 8.84° and thereafter were made after the
calibration coefficients had been automatically updated (see Section 1.3.2). Maximum observed angular
error was 0.00244°

5.2 Noise Assessment
Figure 11 shows the measured angle using the SinCos library for a fixed shaft position. Measurements
were made at a fixed frequency of 16 kHz, and without motor control. The cable length was approximately
1m. The horizontal axis is time in milliseconds; the vertical axis is measured angle in degrees.
Measurement variance was 3.056 x 10-9°.

Figure 11. Measured Angle

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54

FAQ www.ti.com

20 SPRUI54–January 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

C2000™ Position Manager SinCos Library

6 FAQ
Question: Does TI share the source for the PM_sincos library to customers?

Answer: TI does not share the SinCos library source code with customers. For any specific requests,
contact your TI sales contact.

Question: Does TI provide application level interface functions for SinCos?

Answer: Basic usage examples are provided along with the library. Any additional application layer
functionality should be developed by users using the basic driver interface functions provided in the
library.

Question: How can I get technical support for PM_sincos library?

Answer: Contact the local sales team or you can post questions on the C2000 e2e forum, which is
located at: http://e2e.ti.com/support/microcontrollers/c2000/.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUI54
http://e2e.ti.com/support/microcontrollers/c2000/

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

https://www.ti.com/audio
https://www.ti.com/automotive
http://amplifier.ti.com
https://www.ti.com/communications
http://dataconverter.ti.com
https://www.ti.com/computers
http://www.dlp.com
https://www.ti.com/consumer-apps
http://dsp.ti.com
https://www.ti.com/energy
https://www.ti.com/clocks
https://www.ti.com/industrial
http://interface.ti.com
https://www.ti.com/medical
http://logic.ti.com
https://www.ti.com/security
http://power.ti.com
https://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
https://www.ti.com/video
http://www.ti-rfid.com
https://www.ti.com/omap
http://e2e.ti.com
https://www.ti.com/wirelessconnectivity

	C2000 Position Manager SinCos Library
	Table of Contents
	1 Introduction
	1.1 The SinCos Transducer
	1.2 System Description
	1.3 SinCos Implementation Details
	1.3.1 Hardware Interface and Connections
	1.3.2 Software Implementation Details
	1.3.2.1 Angle Calculation
	1.3.2.2 Mode Selection
	1.3.2.3 Error Detection

	2 Installing the PM_sincos Library
	2.1 PM_sincos Library Package Contents
	2.2 How to Install the PM_sincos Library

	3 Module Summary
	3.1 PM_sincos Library Functions
	3.2 Data Structures
	3.3 Details of Function Usage

	4 Using the PM_sincos Library
	4.1 Adding SinCos Lib to the Project
	4.2 Steps for Initialization
	4.3 Resource Requirements

	5 Test Summary
	5.1 Accuracy Assessment
	5.2 Noise Assessment

	6 FAQ

	Important Notice

