
Application Report
SPMA050A–April 2013–Revised May 2013

Migrating Software Projects from StellarisWare® to
TivaWare™

David Wilson .. Stellaris® Microcontrollers

ABSTRACT

As TI launches the Tiva™ family of 32-bit ARM® Cortex™-M4 microcontrollers (MCUs), the StellarisWare®

suite of comprehensive software tools is also migrating to TivaWare™. This new software platform offers
the same features found in earlier versions, but a few changes have been made in the migration process
that require simple modifications to be made in existing StellarisWare applications in order for them to
build and run within the new TivaWare for C Series software tree. This document details the differences
between StellarisWare for LM3S and LM4F MCUs and TivaWare for C Series MCUs, and provides
guidance on the changes that are needed in existing customer code to migrate from the older platform to
the new one.

Unless otherwise indicated, the terms TivaWare and TivaWare for C Series are synonymous.

Contents
1 Background .. 2
2 Quick Start Guide ... 2
3 Specific API and Source Code Changes .. 3
4 Conclusion .. 16

List of Tables

1 Library Naming .. 4

2 Field Name Mappings for struct tm and tTime ... 5

3 Data Types Used in StellarisWare and TivaWare .. 5

4 Hungarian Prefixes Changed in TivaWare .. 6

5 Replacement Tiva C Series Part Numbers for LM4F Part Numbers... 7

Tiva, TivaWare are trademarks of Texas Instruments.
StellarisWare is a registered trademark of Texas Instruments.
Cortex is a trademark of ARM Limited.
ARM is a registered trademark of ARM Limited.
All other trademarks are the property of their respective owners.

1SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Background www.ti.com

1 Background

The StellarisWare software development platform has served TI’s Stellaris ARM Cortex-M3 and Cortex-
M4F microcontrollers well since its introduction in 2006. With the expansion of TI's microcontroller
offerings to now include multiple series of ARM Cortex-based parts that support different market segments
and target applications, however, StellarisWare is becoming TivaWare. This migration requires that some
simple changes be made in the platform architecture and implementation. These minor changes have
been made for several reasons:

• To allow support for multiple, different MCU series under the same TivaWare umbrella;

• To enhance portability of the source code across different processor platforms; and

• To correct known architectural deficiencies and inconsistencies in the StellarisWare code.

All existing StellarisWare features and functionality are maintained in TivaWare for C Series, and all APIs
in the Peripheral Driver Library, Graphics Library, and USB Library that are applicable to Tiva parts are
maintained in the new platform. The required changes are not completely backwards-compatible, so some
source code and project file modifications are necessary in order to port applications that were previously
built with StellarisWare to be able to build correctly with TivaWare.

Programmers value backwards-compatibility. TI has tried to balance the need for—and long-term benefits
of—these changes with the inconvenience caused by some application source modifications in the
migration process. We believe that the migration process is not a difficult challenge, and that most of your
applications can work properly with TivaWare without a great deal of effort or costly software re-
development.

Each series of Tiva parts has its own software installation with contents tailored to the features of that
specific series. This document primarily addresses migrating a StellarisWare application to the TivaWare
for C Series environment. One of the goals of the new approach to Tiva series software is to provide
consistent APIs and environments across all Tiva series; therefore, the information presented here is
broadly applicable to other TivaWare series versions as they become available.

2 Quick Start Guide

Application source code changes are required because of these differences between StellarisWare and
TivaWare:

• Directory structures and library naming have changed.

• C99 data types are now used throughout TivaWare.

• Hungarian prefixes have changed, resulting in name changes for many structure fields.

• Existing Stellaris LM4F device part numbers have changed.

• USB device initialization has been simplified.

• Functions and labels that were deprecated in StellarisWare have been removed from TivaWare.

To allow you to get started on changes to your project, the following procedures provide an overview of
the work required to build and link a typical StellarisWare project in the new TivaWare tree. Users with
applications that do not use the USB Library may find that the changes described in this list are sufficient
to allow them to build and run in the new TivaWare tree. For USB-enabled applications, there are a
handful of other small changes required; these changes are described in a later section.

1. Copy your existing project directory to an equivalent location in the new TivaWare tree. For example, if
your application is at C:\StellarisWare\boards\<your board>\<your app>, copy it to
C:\ti\TivaWare_C_Series_1.0\boards\<your board>\<your app>.

NOTE: Make sure you copy any board-dependent driver code that you developed, typically found in
C:\StellarisWare\boards\<your board>\drivers, and understand that you must create the boards
directory in the TivaWare tree. Pre-built board examples have moved to a new location.

2. Add #includes for <stdint.h> and <stdbool.h> at the top of all source files that include StellarisWare or
TivaWare headers. These headers define the C99 standard data types now used in TivaWare.

3. If your source file includes utils/ustdlib.h, add a #include for <time.h> at the top of the file. This addition
is required to pick up the standard definition of struct tm, that is now used in place of the proprietary
tTime type

4. Globally replace tBoolean in your source code with the standard bool type.

2 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

5. Globally replace tTime with struct tm. If your application uses tTime, you must rework the code to use
the equivalent fields from the C standard struct tm. This modification is a straightforward substitution of
names such as ucMon or ucYear with tm_mon or tm_year.

6. If the application uses any StellarisWare API that requires a structure from one of the StellarisWare
headers, check the field names used in your source code because many of these names have
changed to comply with our new Hungarian prefix convention and use of C99 data types.

7. If using the GPIOPinConfigure() function, modify your project settings or Makefile to replace the
existing PART_LM4Fxxx label with the replacement part number (refer to Table 5).

8. If the application uses any part-specific header file of the form inc/lm4f*.h, replace this name with the
equivalent tm4c part header as described in Section 3.4.

9. Modify your project settings or Makefile to link the Driver Library, Graphics Library, and/or USB Library
from the new locations within the TivaWare tree. The TivaWare libraries are placed as they were in the
StellarisWare tree but have had the -cm3 and -cm4 suffixes removed from both the toolchain directory
names and the library names. See the Library Naming section for more information.

3 Specific API and Source Code Changes

3.1 Directory Structure Changes

The TivaWare directory structure closely mirrors the structure used in StellarisWare releases with two
exceptions:

• The default installation directory has changed from C:\StellarisWare to
C:\ti\TivaWare_C_Series_<version>

• Board-specific example applications have been moved from the boards subdirectory to the
examples\boards subdirectory.

The first change allows for a cleaner overall directory structure when using multiple TivaWare installations,
or installations for different series of Tiva MCUs. This new default directory also ensures that different
versions can be installed side-by-side without overwriting one another if the default directory is chosen
during installation. Of course, the installation directory can be overwritten very easily during the installation
process; users are free to install the TivaWare tree in any directory that suits their specific application
needs. No software or directory node within TivaWare makes any assumption about the name or position
of the root directory.

The second change reduces confusion over the location of code examples. In StellarisWare, code
examples could be found under two different subdirectories: boards for board-specific example
applications, and examples for peripheral-specific examples. All example source code can now be found
under the single examples directory with lower-level subdirectories for boards and peripherals.

StellarisWare users have been free to create their own application projects anywhere in their respective
file systems. This flexibility is also present within TivaWare. For example, if your project resided inside the
C:\StellarisWare directory, moving it to the same location under C:\TI\TivaWare-C-Series-<version> allows
it to compile without including any path-related modifications because the relative paths to all header files
remain unchanged. A previous project stored in C:\StellarisWare\boards\<your board>\<your app> can be
moved into C:\TI\TivaWare-C-Series\boards\<your board>\<your app> (even though the base TivaWare
release does not contain the boards directory at this level) and remains able to be compiled without any
path changes required in the code.

For projects stored outside the C:\StellarisWare subtree, or projects stored within the tree but that contain
references to items outside the tree, some modifications to the toolchain project or makefile are necessary
to account for the fact that the TivaWare libraries and headers are now in a different location as a result of
the change in the default installation directory.

3SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Specific API and Source Code Changes www.ti.com

3.2 Library Naming

The Stellaris family included MCUs based on both the Cortex-M3 and Cortex-M4F architectures; all Tiva
devices are M4F-based. As a result, the names of libraries within TivaWare have been simplified to
remove the core-specific suffix used in recent StellarisWare builds. Table 1 lists the names for both
TivaWare and StellarisWare libraries.

Table 1. Library Naming

Description Toolchain StellarisWare File TivaWare File

driverlib/ccs-m3/Debug/driverlib-cm3.lib
CCS driverlib/ccs/Debug/driverlib.lib

driverlib/ccs-m4f/Debug/driverlib-cm4f.lib

driverlib/rvmdk-cm3/driverlib-cm3.lib
Keil RVMDK driverlib/rvmdk/driverlib.lib

driverlib/rvmdk-cm4f/driverlib-cm4f.lib
Peripheral Driver Library

driverlib/ewarm-cm3/Exe/driverlib-cm3.a
IAR EWARM driverlib/ewarm/Exe/driverlib.a

driverlib/ewarm-cm4f/Exe/driverlib-cm4f.a

driverlib/gcc-cm3/libdriver-cm3.a
gcc and Code Bench driverlib/gcc/libdriver.a

driverlib/gcc-cm4f/libdriver-cm4f.a

grlib/ccs-m3/Debug/ grlib-cm3.lib
CCS grlib/ccs/Debug/grlib.lib

grlib /ccs-m4f/Debug/ grlib-cm4f.lib

grlib /rvmdk-cm3/grlib-cm3.lib
Keil RVMDK grlib/rvmdk/grlib.lib

grlib /rvmdk-cm4f/grlib-cm4f.lib
Graphics Library

grlib /ewarm-cm3/Exe/grlib-cm3.a
IAR EWARM grlib/ewarm/Exe/grlib.a

grlib /ewarm-cm4f/Exe/grlib-cm4f.a

grlib /gcc-cm3/libgr-cm3.a
gcc and Code Bench grlib/gcc/libgr.a

grlib /gcc-cm4f/libgr-cm4f.a

usblib/ccs-m3/Debug/ usblib-cm3.lib
CCS usblib/ccs/Debug/usblib.lib

usblib/ccs-m4f/Debug/usblib-cm4f.lib

usblib/rvmdk-cm3/usblib-cm3.lib
Keil RVMDK usblib/rvmdk/usblib.lib

usblib/rvmdk-cm4f/ usblib-cm4f.lib
USB Library

usblib/ewarm-cm3/Exe/ usblib-cm3.a
IAR EWARM usblib/ewarm/Exe/usblib.a

usblib/ewarm-cm4f/Exe/ usblib-cm4f.a

usblib/gcc-cm3/libusb-cm3.a
gcc and Code Bench usblib/gcc/libusb.a

usblib/gcc-cm4f/libusb-cm4f.a

3.3 C99 Types and Hungarian Prefix Changes

The move from StellarisWare to TivaWare provided an opportunity to correct one aspect of StellarisWare
architectural decision that we have wanted to address for several years. StellarisWare APIs use simple C
data types such as unsigned long; however, these types typically suffer from a significant problem: the
size of each type differs depending on the CPU on which they are used. While this distinction may not be
an issue when using StellarisWare with a single microprocessor family, it created several portability
problems and left the API open to further issues as the underlying microprocessor architecture evolved
over time.

To address this potential issue, and to allow the software to be ported to other architectures without the
need for significant source code rework, TivaWare now uses standard, unambiguously-sized C99 data
types. By using these types, for example, a 32-bit entity is guaranteed to remain at 32 bits regardless of
the processor on which the code is run.

4 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

Although the StellarisWare API has migrated to TivaWare, this data type change has several
consequences that require existing applications to be reworked if they previously used StellarisWare APIs
and are now to be used with TivaWare. First, C99 types are not compiler-intrinsic; instead, these types are
defined via standard C runtime headers: stdint.h for basic types and stdbool.h for the bool Boolean type.
Both StellarisWare and TivaWare headers have a policy of not nesting other headers, so these two
standard headers must now be added to all source files that include any TivaWare header to ensure that
the required basic data types are available.
#include <stdbool.h>
#include <stdint.h>

While making this change, we also decided to remove the use of a proprietary data type, tTime, to
represent date and time values. Instead, functions in the utils/ustdlib files have been reworked to use the
standard struct tm structure instead of tTime. Consequently, source files that include utils/ustdlib.h must
also include the standard time.h header file.
#include <time.h>

Although source code modifications are required as a result of the use of struct tm, the field names in
struct tm closely mirror those in tTime, making the modifications straightforward. The field names in struct
tm and tTime are mapped as Table 2 shows.

Table 2. Field Name Mappings for struct tm and tTime

tTime Field Name struct tm Field Name Notes

tm_year is defined as “Years
since 1900” whereas usYear
contained the actual year. ThisusYear tm_year difference must be taken into
account when reworking code
that uses this field.

ucMon tm_mon

ucMday tm_mday

ucWdat tm_wday

ucHour tm_hour

ucMin tm_min

ucSec tm_sec

The second consequence of the C99 type change—and the one that more likely requires source code
updates—is the associated change of Hungarian prefixes. While this change poses no problems for
parameter naming, it does change the names of most structure fields, and therefore impacts users of
USBLib and GrLib. In addition to changing the prefix used as a result of the new data types, TI has made
every effort to ensure that Hungarian prefixes are used consistently throughout the codebase. This change
has resulted in some additional structure field name changes where the previous name did not employ the
correct prefix.

The list of data types used in StellarisWare along with their Hungarian prefixes and the new TivaWare
replacements is given in Table 3.

Table 3. Data Types Used in StellarisWare and TivaWare

StellarisWare
Type Old Prefix TivaWare Type New Prefix Example

tBoolean b bool b bFoo

char (1) c char c cFoo

char (2) c int8_t i8 i8Foo

short s int16_t i16 i16Foo

long l int32_t i32 i32Foo

long long ll int64_t i64 i64Foo

(1) When used to represent a text character encoding.
(2) When used to represent an 8-bit signed number.

5SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Specific API and Source Code Changes www.ti.com

Table 3. Data Types Used in StellarisWare and TivaWare (continued)

StellarisWare
Type Old Prefix TivaWare Type New Prefix Example

unsigned char uc uint8_t ui8 ui8Foo

unsigned short us uint16_t ui16 ui16Foo

unsigned long ul uint32_t ui32 ui32Foo

unsigned long long ull uint64_t ui64 ui64Foo

Table 4 lists the Hungarian prefixes that were often used inconsistently in StellarisWare. Affected variables
and field names have been changed in TivaWare:

Table 4. Hungarian Prefixes Changed in TivaWare

Type Prefix Example

pointer p<prefix> pcFoo, pui32Foo

typedef t tFoo

enumeration values e eFoo

function pointer pfn pfnFoo

structure variable s sFoo

union variable u uFoo

enumeration variable i iFoo

array p<prefix> pcFoo[], pui32Foo[]

Pointer to pointer or two- pp<prefix> ppcFoo, ppui32Foodimensional array

The effect of passing parameters using the old data types to TivaWare functions varies depending on the
toolchain and switches in use. When using GCC 4.3.6 with –Wall –pedantic, for example, passing
unsigned long variables into functions and expecting uint32_t parameters produces no warning. Doing the
same action when using Keil RVMDK with All warnings enabled but Strict ANSI C disabled, however,
yields a warning but generates output that links and runs correctly.

3.4 Part Number Changes

Pre-production LM4F Stellaris part numbers are changing to TM4C (Tiva C Series) part numbers as the
parts are fully qualified for production status. The old and new parts are functionally identical, but the part
number change affects some software that uses the part-specific header files found in the inc directory of
a StellarisWare or TivaWare release. These headers are named for the specific part number in use and
contain all register definitions relevant to that specific part. If your project code uses one of these headers,
use Table 5 to determine the new part number for your MCU, and replace the lm4f header with the
equivalent tm4c version. Label definitions carry forward from the old headers to the new ones, so no
source code modification other than the filename change is required as a result of this change.

Software that uses the DriverLib API does not generally use part-specific header files, with the exception
of the GPIOPinConfigure() function that makes used of label definitions found in pin_map.h. This header
contains label definitions tailored for each specific part. These definitions are controlled by a preprocessor
definition of the form PART_X where X is the target part number. Because pin_map.h now uses Tiva part
numbers, the label defined in the application makefile or project must be modified to ensure that the
correct set of part-specific pin muxing labels is defined.

As an example, if your application was previously targeting an LM4F232H5QD part, and your project or
makefile defines the label PART_LM4F232H5QD, you must replace this label with
PART_TM4C123GH6PGE to ensure that the correct pin muxing labels are included for the target device.

6 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

Table 5. Replacement Tiva C Series Part Numbers for LM4F Part Numbers

LM4F Part No TM4C Part No LM4F Part No TM4C Part No

LM4F110B2QR TM4C1231C3PM LM4F131E5QR TM4C1236E6PM

LM4F110C4QR TM4C1231D5PM LM4F131H5QR TM4C1236H6PM

LM4F110E5QR TM4C1231E6PM LM4F130C4QR TM4C1237D5PM

LM4F110H5QR TM4C1231H6PM LM4F130E5QR TM4C1237E6PM

LM4F111B2QR TM4C1230C3PM LM4F130H5QR TM4C1237H6PM

LM4F111C4QR TM4C1230D5PM LM4F132C4QC TM4C1237D5PZ

LM4F111E5QR TM4C1230E6PM LM4F132E5QC TM4C1237E6PZ

LM4F111H5QR TM4C1230H6PM LM4F132H5QC TM4C1237H6PZ

LM4F112C4QC TM4C1231D5PZ LM4F132H5QD TM4C1237H6PGE

LM4F112E5QC TM4C1231E6PZ LM4F210E5QR TM4C123BE6PM

LM4F112H5QC TM4C1231H6PZ LM4F210H5QR TM4C123BH6PM

LM4F112H5QD TM4C1231H6PGE LM4F211E5QR TM4C123AE6PM

LM4F120B2QR TM4C1233C3PM LM4F211H5QR TM4C123AH6PM

LM4F120C4QR TM4C1233D5PM LM4F212E5QC TM4C123BE6PZ

LM4F120E5QR TM4C1233E6PM LM4F212H5QD TM4C123BH6PGE

LM4F120H5QR TM4C1233H6PM LM4F212H5QC TM4C123BH6PZ

LM4F121B2QR TM4C1232C3PM LM4F212H5BB TM4C123BH6ZRB

LM4F121C4QR TM4C1232D5PM LM4F231E5QR TM4C123FE6PM

LM4F121E5QR TM4C1232E6PM LM4F231H5QR TM4C123FH6PM

LM4F121H5QR TM4C1232H6PM LM4F230E5QR TM4C123GE6PM

LM4F122C4QC TM4C1233D5PZ LM4F230H5QR TM4C123GH6PM

LM4F122E5QC TM4C1233E6PZ LM4F232E5QC TM4C123GE6PZ

LM4F122H5QC TM4C1233H6PZ LM4F232H5QD TM4C123GH6PGE

LM4F122H5QD TM4C1233H6PGE LM4F232H5QC TM4C123GH6PZ

LM4F131C4QR TM4C1236D5PM LM4F232H5BB TM4C123GH6ZRB

3.5 DriverLib Changes

All peripherals and functions that were on Stellaris devices and are on Tiva devices are supported by the
DriverLib API in TivaWare. Function names and operations are unchanged; in general, the only source
code changes required to use the TivaWare DriverLib relate to C99 data types (see Section 3.3).
Depending on your toolchain, these changes may also prove unnecessary. As noted earlier, some
toolchains allow intermixing of C99 types and equivalently-sized objects defined that use the previous
types without generating warnings.

3.5.1 Peripherals Removed

The I2S, EPI, and Ethernet modules have been removed from DriverLib in the migration from
StellarisWare to TivaWare. These peripherals are not available on any current Tiva parts, and are
therefore unnecessary. When Tiva series devices are released that support these interfaces, the relevant
modules or their replacements will be added to DriverLib.

3.5.2 Modules with APIs or Labels Removed

Several modules within DriverLib have had functions or labels removed in the process of moving to the
TivaWare version of the library. In most cases, these functions or labels were already marked as
deprecated in StellarisWare, and the removal from the TivaWare header files is merely the completion of
this deprecation process. In all cases, a straightforward replacement function or label exists, and code that
uses the deprecated value can be easily updated to use the replacement value.

7SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Specific API and Source Code Changes www.ti.com

In a handful of cases, functions within StellarisWare existed to support features that are no longer required
on any Tiva part; these functions have been removed from TivaWare. These calls can be safely deleted
from existing code.

The following subsections review the affected functions and text attributes, and provide the corresponding
replacement code or comments about the function.

3.5.2.1 ADC

Function Name Replacement Notes

ADCResolutionSet None All Tiva parts contain 12-bit ADCs
so these functions are redundantADCResolutionGet
in TivaWare

3.5.2.2 CAN

Function Name Replacement Notes

CANSetBitTiming CANBitTimingSet Previously deprecated

CANGetBitTiming CANBitTimingGet Previously deprecated

3.5.2.3 Comparator

Function Name Replacement Notes

COMP_OUTPUT_NONE COMP_OUTPUT_NORMAL Previously deprecated

3.5.2.4 Flash

Function Name Replacement Notes

FlashIntGetStatus FlashIntStatus Previously deprecated

FlashUsecGet None This function is not required on
any Tiva C Series devices.

FlashUsecSet None This function is not required on
any Tiva C Series devices.

3.5.2.5 GPIO

Pin_map.h must now be included in addition to gpio.h if the function GPIOPinConfigure() is to be used.
Previously, this header was included within gpio.h.

Function Name Replacement Notes

GPIOPinIntEnable GPIOIntEnable Functions renamed for
consistency with otherGPIOPinIntDisable GPIOIntDisable
peripherals.

GPIOPinIntStatus GPIOIntStatus

GPIOPinIntClear GPIOIntClear

GPIOPortIntRegister GPIOIntRegister

GPIOPortIntUnregister GPIOIntUnregister

8 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

3.5.2.6 Hibernate

Function Name Replacement Notes

HibernateClockSelect None Function is not required on any
Tiva C Series device.

HibernateEnable HibernateEnableExpClk Previously deprecated

HibernateRTCMatch0Set HibernateRTCMatchSet The replacement functions take
the match register index as aHibernateRTCMatch0Get HibernateRTCMatchGet
parameter. This method allows a

HibernateRTCMatch1Set HibernateRTCMatchSet cleaner, more flexible
implementation across devicesHibernateRTCMatch1Get HibernateRTCMatchGet
with different numbers of match

HibernateRTCSSMatch0Set HibernateRTCSSMatchSet registers.

HibernateRTCSSMatch0Get HibernateRTCSSMatchGet

3.5.2.7 I2C

Function Name Replacement Notes

I2CMasterInit I2CMasterInitExpClk Previously deprecated

Function Name Replacement Notes

I2Cn_MASTER_BASE I2C was the only StellarisWare
peripheral to be defined using two
independent base address labels.
Each I2C instance is now
identified using a single base
address label to ensure
consistency with all other
peripherals. All register offsetI2Cn_BASE labels in hw_i2c.h are stillI2Cn_SLAVE_BASE
defined, but the values for the
slave registers have been
modified such that they are now
relative to the single peripheral
base address rather than the
base address of the slave register
block.

3.5.2.8 PWM

Function Name Replacement Notes

PWM_INT_FAULT PWM_INT_FAULTn (0 ≤ n ≤ 3) Previously deprecated. PWM now
supports up to four faults, so
individual labels are defined for
each fault.

3.5.2.9 SSI

Function Name Replacement Notes

SSIConfig SSIConfigSetExpClk Previously deprecated

SSIDataNonBlockingGet SSIDataGetNonBlocking Previously deprecated

SSIDataNonBlockingPut SSIDataPutNonBlocking Previously deprecated

9SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Specific API and Source Code Changes www.ti.com

3.5.2.10 SYSCTL

Function Name Replacement Notes

SysCtlPinPresent None Tiva devices all support pin
muxing, so this function is no
longer relevant.

SysCtlI2SMClkSet None No current Tiva device includes
I2S so this function is not
required.

SysCtlLDOSet None Not relevant to any current Tiva
device.

SysCtlLDOGet None Not relevant to any current Tiva
device.

Label Name Replacement Notes

SYSCTL_PERIPH_WDOG SYSCTL_PERIPH_WDOG0 Previously deprecated

SYSCTL_PERIPH_ADC SYSCTL_PERIPH_ADC0 Previously deprecated

SYSCTL_PERIPH_PWM SYSCTL_PERIPH_PWM0 Previously deprecated

SYSCTL_PERIPH_SSI SYSCTL_PERIPH_SSI0 Previously deprecated

SYSCTL_PERIPH_QEI SYSCTL_PERIPH_QEI0 Previously deprecated

SYSCTL_PERIPH_I2C SYSCTL_PERIPH_I2C0 Previously deprecated

SYSCTL_PERIPH_IEEE1588 None No current Tiva device supports
Ethernet, so this feature is not
required.

SYSCTL_PERIPH_PLL None This label was intended for use
with SysCtlPeripheralPresent.
The PLL is present in all Tiva
devices, however, so the label is
redundant.

SYSCTL_PERIPH_TEMP None This label was intended for use
with SysCtlPeripheralPresent.
The ADC-based internal
temperature sensor is present in
all Tiva parts, however, so the
label is redundant.

SYSCTL_PERIPH_MPU None This label was intended for use
with SysCtlPeripheralPresent.
The MPU is present in all Tiva
devices, however, so the label is
redundant.

SYSCTL_PERIPH2_<peripheral> SYSCTL_PERIPH_<peripheral> Tiva devices no longer support
the legacy LM3S SysCtl registers
used to enable and disable
peripherals, so the additional
peripheral labels that were used
to differentiate between the
SysCtl register sets are no longer
required.

10 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

3.5.2.11 Timers

Label Name Replacement Notes

TIMER_CFG_32_BIT_OS TIMER_CFG_ONE_SHOT Previously deprecated

TIMER_CFG_32_BIT_OS_UP TIMER_CFG_ONE_SHOT_UP Previously deprecated

TIMER_CFG_32_BIT_PER TIMER_CFG_PERIODIC Previously deprecated

TIMER_CFG_32_BIT_PER_UP TIMER_CFG_A_PERIODIC_UP Previously deprecated

TIMER_CFG_32_RTC TIMER_CFG_RTC Previously deprecated

TIMER_CFG_16_BIT_PAIR TIMER_CFG_SPLIT_PAIR Previously deprecated

Function Name Replacement Notes

TimerQuiesce None SysCtlPeripheralReset may be
used to perform the same
function.

3.5.2.12 UART

Function Name Replacement Notes

UARTConfigSet UARTConfigSetExpClk Previously deprecated

UARTConfigGet UARTConfigGetExpClk Previously deprecated

UARTCharNonBlockingGet UARTCharGetNonBlocking Previously deprecated

UARTCharNonBlockingPut UARTCharPutNonBlocking Previously deprecated

3.5.2.13 USB

Function Name Replacement Notes

USBIntStatus USBIntStatusControl or Previously deprecated. Interrupts
USBIntStatusEndpoint depending are now handled using different

on the endpoint that is in use. APIs for endpoint 0 (the control
endpoint) and all other endpoints.

USBIntDisable USBIntDisableControl or Previously deprecated. Interrupts
USBIntDisableEndpoint are now handled using different

depending on the endpoint that is APIs for endpoint 0 (the control
in use. endpoint) and all other endpoints.

USBIntEnable USBIntEnableControl or Previously deprecated. Interrupts
USBIntEnableEndpoint depending are now handled using different

on the endpoint that is in use. APIs for endpoint 0 (the control
endpoint) and all other endpoints.

USBDevEndpointConfig USBDevEndpointConfigSet Previously deprecated

USBHostPwrFaultConfig USBHostPwrConfig Previously deprecated

Label Name Replacement Notes

USB_HOST_PWREN_LOW USB_HOST_PWREN_AUTOLOW Previously deprecated

USB_HOST_PWREN_HIGH USB_HOST_PWREN_AUTOHIGH Previously deprecated

USB_HOST_PWREN_VBLOW USB_HOST_PWREN_AUTOLOW Previously deprecated

USB_HOST_PWREN_VBHIGH USB_HOST_PWREN_AUTOHIGH Previously deprecated

USB_INT_* USB_INTCTRL_* or USB_INTEP_* Previously deprecated.
depending on the endpoint referred to Interrupts have been split
by the interrupt. into two groups for the

control endpoint and other
endpoints.

11SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Specific API and Source Code Changes www.ti.com

3.5.2.14 uartstdio

Function Name Replacement Notes

UARTStdioInit UARTStdioConfig Previously, UARTStdio offered
three different APIs that allowedUARTStdioInitExpClk UARTStdioConfig
the module to be configured.
UARTStdioInit did not allow
selection of the baud rate. and
this capability was added with
UARTStdioInitExpClk.
Changes to clock configuration for
Tiva devices require that a new
function also takes the UART
module clock frequency as a
parameter; therefore, rather than
have a third, overlapping function,
we determined that replacing the
first two with a single new function
was a cleaner solution. As a
result, UARTStdioConfig is now
provided; this function takes both
the desired baud rate and UART
module clock rate as parameters.

3.6 Graphics Library Changes

Structures play a significant role in the StellarisWare Graphics Library API. As a result, the majority of
source changes required to move graphics code to TivaWare are related to changes in the field names
because of new data types and associated differing Hungarian prefixes. Except for data types, however,
no GrLib API function has been changed in the transition from StellarisWare to TivaWare.

One noteworthy data type change is another example of Hungarian prefix correction that relates to fonts.
In StellarisWare, font pointers exported by the graphics library were named g_pFontSomething. To comply
with the new, stricter Hungarian notation, these pointers have been changed to g_psFontSomething. All
fonts that were previously included in the Graphics Library are still present, but now employ this new
naming convention.

If your application uses its own custom fonts, string tables, or images, note that the ftrasterize,
mkstringtable, and pnmtoc tools have been updated to generate output compatible with these data type
and naming convention changes in TivaWare.

One change has also been made in the Graphics Library display driver interface. In the past, the lBPP
parameter (now renamed i32BPP) to the PixelDrawMultiple function contained the value 1, 4, or 8 to
indicate the source image color resolution. This condition is still true, but the most significant 24 bits of the
parameter are now reserved for optional flags that may help to optimize performance for some drivers. As
a result of this change, existing display drivers must be sure to clear the top three bytes of the parameter
to extract the number of bits per pixel information.

Additionally, one optimization flag has been implemented that may be helpful for display drivers. On the
first call to PixelDrawMultiple for a new image, GRLIB_DRIVER_FLAG_NEW_IMAGE (bit 30) of i32BPP is
set. This action indicates to the driver that it should rebuild any lookup tables it requires to render the
image based on the palette passed. If this flag is clear, the driver can assume that the image palette has
not changed since the last call, and avoid the overhead of reconstructing its lookup table.

12 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

3.7 USB Library Changes

In addition to the basic data type and Hungarian prefix changes, several additional minor changes have
been made in the USB Library that require source code changes.

NOTE: Existing USBLib structures that mirror structures defined in the USB specification have not
been modified to use the new Hungarian type prefixes. The names of these structure
members continue to match the USB specification name for the field. Structures in this
category include:
• tUSBRequest
• tDescriptorHeader
• tDeviceDescriptor
• tDeviceQualifierDescriptor
• tConfigDescriptor
• tBOSDescriptor
• tInterfaceDescriptor
• tEndpointDescriptor
• tString0Descriptor
• tStringDescriptor

The new convention for describing members of an enumerated type has been applied to tUSBMode,
resulting in the need to replace (for example) existing mentions of USB_MODE_OTG with
eUSBModeOTG.

3.7.1 VID

Existing applications that may have sublicensed the TI/Stellaris vendor ID 0x1CBE will find that the label
USB_VID_STELLARIS is no longer included in the usb-ids.h header file. This label has been replaced by
USB_VID_TI_1CBE.

3.7.2 Device Class Private Instance Data

The handling of USB device private instance data has changed to simplify applications. In StellarisWare,
USB device definition structures such as tUSBDBulkDevice, tUSBDHIDDevice, and
tUSBDCompositeDevice contained pointers to a private instance structure that the device class used to
store device state information during application operation. This indirection has now been removed, and
the private instance data structure is now embedded within the device definition structure itself. As a
result, applications no longer need to declare device workspace independently of the device definition.

When initializing the device definition structure in TivaWare, the application can ignore the private instance
structure because the device class initialization function performs all needed initialization of the structure.

As an example, take a bulk device. The StellarisWare source code may have appeared in this manner:
tBulkInstance g_sBulkInstance;

const tUSBDBulkDevice g_sBulkDevice =
{

USB_VID_STELLARIS,
USB_PID_BULK,
500,
USB_CONF_ATTR_SELF_PWR,
USBBufferEventCallback,
(void *)&g_sRxBuffer,
USBBufferEventCallback,
(void *)&g_sTxBuffer,
g_pStringDescriptors,
NUM_STRING_DESCRIPTORS,
&g_sBulkInstance

};

13SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Specific API and Source Code Changes www.ti.com

This code structure should now be declared as shown below. Note that the structure must no longer be
marked const because some of its internal fields are written by USBLib. Therefore, it must be stored in
RAM rather than flash.
tUSBDBulkDevice g_sBulkDevice =
{

USB_VID_TI_1CBE,
USB_PID_BULK,
500,
USB_CONF_ATTR_SELF_PWR,
USBBufferEventCallback,
(void *)&g_sRxBuffer,
USBBufferEventCallback,
(void *)&g_sTxBuffer,
g_ppui8StringDescriptors,
NUM_STRING_DESCRIPTORS
//
// No initializer necessary for the instance data.
//

};

3.7.3 Composite device changes

In addition to the instance data change described above (which also affects tUSBDCompositeDevice), the
method of initializing a composite USB device has been simplified. This change removes the requirement
for an application to initialize the tCompositeEntry array containing information on each device class
instance that comprises the composite device, and also hides all private instance data from the
application. The tCompositeEntry array is now initialized by the individual classes in the
USBC<class>CompositeInit() function; private data are instantiated directly within each device structure,
rather than as an independent buffer declared by the application.

Code to implement a composite device that supports two CDC serial device instances may have been
written in a manner similar to the following snippet:
//**
//
// The array of devices supported by this composite device.
//
//**
tCompositeEntry g_psCompDevices[2]=
{

//
// Serial port 0 device instance.
//
{

&g_sCDCDeviceInfo,
0

},

//
// Serial port 1 device instance.
//
{

&g_sCDCDeviceInfo,
0

}
};

//
// …other structure definitions removed for clarity.
//

14 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

www.ti.com Specific API and Source Code Changes

//**
//
// The memory allocated to hold the composite descriptor that is created by
// the call to USBDCompositeInit().
//
//**
#define DESCRIPTOR_DATA_SIZE (COMPOSITE_DCDC_SIZE * 2)
uint8_t g_pui8DescriptorData[DESCRIPTOR_DATA_SIZE];

//
// Initialize each of the CDC instances and add them to the composite
// device interface array.
//
g_sCompDevice.psDevices[0].pvInstance =
USBDCDCCompositeInit(0, &g_psCDCDevice[0]);
g_sCompDevice.psDevices[1].pvInstance =
USBDCDCCompositeInit(0, &g_psCDCDevice[1]);

//
// Pass the device information to the USB library and place the device
// on the bus.
//
USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE,
g_pui8DescriptorData);

In TivaWare, this implementation should be rewritten as shown:
//**
//
// The array of devices supported by this composite device. We no longer need
// to initialize this array.
//
//**
tCompositeEntry g_psCompDevices[2];

//
// …other structure definitions removed for clarity.
//

//**
//
// The memory allocated to hold the composite descriptor that is created by
// the call to USBDCompositeInit().
//
//**
#define DESCRIPTOR_DATA_SIZE (COMPOSITE_DCDC_SIZE * 2)
uint8_t g_pui8DescriptorData[DESCRIPTOR_DATA_SIZE];

//
// Initialize each of the CDC instances and add them to the composite
// device interface array.
//
USBDCDCCompositeInit(0, &g_psCDCDevice[0], &g_psCompDevices[0]);
USBDCDCCompositeInit(0, &g_psCDCDevice[1], &g_psCompDevices[1]);

//
// Pass the device information to the USB library and place the device
// on the bus.
//
USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE, g_pui8DescriptorData);

15SPMA050A–April 2013–Revised May 2013 Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

Conclusion www.ti.com

4 Conclusion

TivaWare offers the same API set as provided for Stellaris Cortex-M4F MCUs, with changes intended to
support multiple series of TI’s new Tiva MCU products within a single software architecture and directory
structure. Building your existing StellarisWare application in this new TivaWare software environment
requires some minor source code and project file changes, most of which can be accomplished by simply
using search-and-replace operations in your editor of choice.

16 SPMA050A–April 2013–Revised May 2013Migrating Software Projects from StellarisWare® to TivaWare™
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA050A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

https://www.ti.com/audio
https://www.ti.com/automotive
http://amplifier.ti.com
https://www.ti.com/communications
http://dataconverter.ti.com
https://www.ti.com/computers
http://www.dlp.com
https://www.ti.com/consumer-apps
http://dsp.ti.com
https://www.ti.com/energy
https://www.ti.com/clocks
https://www.ti.com/industrial
http://interface.ti.com
https://www.ti.com/medical
http://logic.ti.com
https://www.ti.com/security
http://power.ti.com
https://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
https://www.ti.com/video
http://www.ti-rfid.com
https://www.ti.com/omap
http://e2e.ti.com
https://www.ti.com/wirelessconnectivity

	Migrating Software Projects from StellarisWare® to TivaWare™
	1 Background
	2 Quick Start Guide
	3 Specific API and Source Code Changes
	3.1 Directory Structure Changes
	3.2 Library Naming
	3.3 C99 Types and Hungarian Prefix Changes
	3.4 Part Number Changes
	3.5 DriverLib Changes
	3.5.1 Peripherals Removed
	3.5.2 Modules with APIs or Labels Removed
	3.5.2.1 ADC
	3.5.2.2 CAN
	3.5.2.3 Comparator
	3.5.2.4 Flash
	3.5.2.5 GPIO
	3.5.2.6 Hibernate
	3.5.2.7 I2C
	3.5.2.8 PWM
	3.5.2.9 SSI
	3.5.2.10 SYSCTL
	3.5.2.11 Timers
	3.5.2.12 UART
	3.5.2.13 USB
	3.5.2.14 uartstdio

	3.6 Graphics Library Changes
	3.7 USB Library Changes
	3.7.1 VID
	3.7.2 Device Class Private Instance Data
	3.7.3 Composite device changes

	4 Conclusion

