
Subsystem Design
Emulate EEPROM With Flash (Type A)

Yuhao Zhao

1 Description
This subsystem demonstrates how to implement Electrically Erasable Programmable Read-Only Memory 
(EEPROM) emulation (Type A) in the application. EEPROM emulation allows a device to emulate EEPROM 
in Flash memory, and make an equivalent durability similar to EEPROM. The following features are available 
using Flash memory:

• Data retention after unexpected power loss
• Flexible structure for different applications
• User-configured erase operation

Download the code for this example.

There are two types of EEPROM emulation libraries for MSPM0. Type A is to store one large block of data 
(64 bytes, 128 bytes or 256 bytes) with a Static Random Access Memory (SRAM) buffer. See the EEPROM 
Emulation Type A Design application note for details of the library. Type B is to store many small data items 
(16bit or 32bit) with item identifiers. See also the EEPROM Emulation Type B Design application note for details 
of the library.

This subsystem shows the usage of Type A. For the Type B subsystem, see the Emulate EEPROM With Flash 
(Type B) subsystem design.

Figure 1-1 shows a functional diagram of this subsystem.

MSPM0 MCU

EEPROM Emulation 
(in software)UART

Figure 1-1. Subsystem Functional Block Diagram

2 Required Peripherals
This application requires Flash.

Table 2-1. Required Peripherals
Subblock Functionality Peripheral Use Notes

Flash API (1 ×) Flash Called FLASHCTL in code

www.ti.com Description

SLAAEN2 – FEBRUARY 2025
Submit Document Feedback

Emulate EEPROM With Flash (Type A) 1

Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?a=a3PaaoK__1.10.01.05&node=A__AFdURjjWdUqaYh4j-w2wng__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/lit/pdf/slaae58
https://www.ti.com/lit/pdf/slaae58
https://www.ti.com/lit/pdf/slaaeb4
https://www.ti.com/lit/pdf/slaaen3
https://www.ti.com/lit/pdf/slaaen3
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN2&partnum=MSPM0L1306,


3 Compatible Devices
Based on the requirements in Table 2-1, this example is compatible with the devices in Table 3-1. The 
corresponding EVM can be used for prototyping.

Table 3-1. Compatible Devices
Compatible Devices EVM

MSPM0Gxxxx LP-MSPM0G3507

MSPM0Lxxxx LP-MSPM0L1306

MSPM0Cxxxx LP-MSPM0C1104

MSPM0Hxxxx LP-MSPM0H3216

4 Design Steps
1. Add the EEPROM emulation library. The MSPM0 software development kit (SDK) includes the EEPROM 

emulation library.

Note
The EEPROM emulation library is based on the Flash API so the drivelib from SDK is also 
required.

For Type A, the following files are needed:
a. eeprom_emulation_type_a.c
b. eeprom_emulation_type_a.h

Figure 4-1. EEPROM Emulation Files
2. Add the include path in the code for eeprom_emulation_type_a.h. 

Users can modify the start address, the number of sectors to use, and the record size in 
eeprom_emulation_type_a.h. The default Flash address used for EEPROM emulation is 0x00001000, and 
2 sectors are used by default, so 0x00001000-0x000017ff is occupied. Additionally, the default size of the 
emulated EEPROM is 128 bytes.

a. #define EEPROM_EMULATION_ADDRESS (0x00001000)
b. #define EEPROM_EMULATION_SECTOR_ACCOUNT (2)
c. #define EEPROM_EMULATION_RECORD_SIZE (128)

3. Define a global array as a buffer in random-access memory (RAM). Every time the system powers on, the 
data of the emulated EEPROM is loaded from Flash to this buffer using the initialize function. The size of 
array ought to be equal to the record size in step 2.
• uint32_t EEPROMEmulationBuffer[EEPROM_EMULATION_DATA_SIZE / 

sizeof(uint32_t)];

Compatible Devices www.ti.com

2 Emulate EEPROM With Flash (Type A) SLAAEN2 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/LP-MSPM0G3507
https://www.ti.com/tool/LP-MSPM0L1306
https://www.ti.com/tool/LP-MSPM0C1104
https://www.ti.com/tool/LP-MSPM0H3216
https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN2&partnum=MSPM0L1306,


4. Add the initialize function at the beginning of main(), typically after SYSCFG_DL_init(). This action 
allows the relevant Flash areas to be formatted correctly and global variables to be allocated correctly. The 
initialize function EEPROM_TypeA_init() also searches the active record and loads the data from Flash to 
the buffer in step 3.
• EEPROM_TypeA_init(&EEPROMEmulationBuffer[0]);

Figure 4-2. EEPROM Initialization
5. Users can read or modify the buffer in RAM, as needed, after initialization. When the data from the buffer to 

Flash need to be stored, call EEPROM_TypeA_writeData() to create a new record in Flash.

Note
After power down, the data in RAM is lost. To implement data storage after power loss, execute this 
function at least once.

• EEPROM_TypeA_writeData(&EEPROMEmulationBuffer[0]);

Figure 4-3. EEPROM Write
6. Add the erase function according to the gEEPROMTypeAEraseFlag. Flash needs to be erased before 

writing data again and the smallest unit of erasure is sector. For EEPROM emulation, after one sector is full, 
gEEPROMTypeAEraseFlag is set. Users can call EEPROM_TypeA_eraseLastSector() according to the 
flag. For example, add the following code after EEPROM_TypeA_writeData() from step 5. Users can also 
choose an appropriate timepoint to erase the full sector, as needed.
• EEPROM_TypeA_eraseLastSector();

Figure 4-4. EEPROM Erase

After steps 1 through 6, the EEPROM emulation Type A is implemented in the application. See Section 6 for the 
flow.

www.ti.com Design Steps

SLAAEN2 – FEBRUARY 2025
Submit Document Feedback

Emulate EEPROM With Flash (Type A) 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN2&partnum=MSPM0L1306,


5 Design Considerations
1. There are three user-configurable parameters in eeprom_emulation_type_a.h. These parameters can be 

configured accordingly, depending on the requirements of the application. To set appropriate parameters, 
see the application aspects section in the EEPROM Emulation Type A Design application note.
a. Record size: 64, 128, or 256 bytes
b. Number of sectors used: at least 2
c. Sector address

2. To evaluate the Flash usage and cycling capability, see the application aspects section in the EEPROM 
Emulation Type A Design application note.

3. Data or header corruption is possible in case of a power loss during a EEPROM_TypeA_writeData or 
EEPROM_TypeA_eraseLastSector.

To detect, and recover from corruption, implement EEPROM_TypeA_init. Call 
EEPROM_TypeA_initimmediately after power-up. EEPROM_TypeA_init checks all the headers of the 
records to confirm whether data storage of EEPROM emulation is correct, and performs format-repair, if 
necessary.

In the structure of EEPROM emulation, headers show the status of the corresponding records. There are 
four states in total. The changes between the four states are described in detail in Section 4.

6 Software Flow Chart
Figure 6-1 shows the code flow diagram for EEPROM Emulation Type A which introduces how to 
add functions in application code to implement EEPROM emulation. Three functions are required here: 
EEPROM_TypeA_init, EEPROM_TypeA_writeData, EEPROM_TypeA_eraseLastSector.

User’s application

Start

Uint8 buffer[record size]

fail operation init ok?

EEPROM_init

application:
read buffer
edit buffer

EEPROM_write

write ok?

need erase?EEPROM_erase

fail operation

active record search
format check 
read active record to buffer in RAM
format init, if necessary

User can directly read or edit 
buffer in RAM

After EEPROM_write, buffer is 
stored in FLASH

If sector is full, it needs to be erased

Figure 6-1. Application Software Flow Chart

Design Considerations www.ti.com

4 Emulate EEPROM With Flash (Type A) SLAAEN2 – FEBRUARY 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slaae58
https://www.ti.com/lit/pdf/slaae58
https://www.ti.com/lit/pdf/slaae58
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN2&partnum=MSPM0L1306,


7 Application Code
To implement this functionality, six functions are required. In addition to the three functions mentioned in Section 
6, the remaining three functions are called primarily by EEPROM_TypeA_init.

• EEPROM_TypeA_init
• EEPROM_TypeA_writeData
• EEPROM_TypeA_eraseLastSector
• EEPROM_TypeA_readData
• EEPROM_TypeA_searchCheck
• EEPROM_TypeA_repairFormat

Additionally, seven global variables are used to record the status of the EEPROM emulation. Four global 
variables are used to trace the active record.

• uint32_t gActiveRecordAddress
• uint32_t gNextRecordAddress;
• uint16_t gActiveRecordNum;
• uint16_t gActiveSectorNum;

gActiveRecordAddress and gNextRecordAddress are used to store the address about active record.

gActiveRecordNum and gActiveSectorNum are used to trace the position of active record.

Three global variables are used for flags.

• bool gEEPROMTypeASearchFlag;
• bool gEEPROMTypeAEraseFlag;
• bool gEEPROMTypeAFormatErrorFlag;

gEEPROMTypeASearchFlag is set when the active record exists.

gEEPROMTypeAEraseFlag is set when the sector is full and needs to be erased.

gEEPROMTypeAFormatErrorFlag is set When format error is found.

8 Additional Resources
• Texas Instruments, EEPROM Emulation Type A Design Application Note
• Texas Instruments, EEPROM Emulation Type B Design Application Note
• Texas Instruments, Emulate EEPROM With Flash (Type B) Subsystem Design
• Texas Instruments, Download the MSPM0 SDK
• Texas Instruments, Learn more about SysConfig

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Application Code

SLAAEN2 – FEBRUARY 2025
Submit Document Feedback

Emulate EEPROM With Flash (Type A) 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slaae58
https://www.ti.com/lit/pdf/slaaeb4
https://www.ti.com/lit/pdf/slaaen3
https://dev.ti.com/tirex/explore/node?node=A__AMztb67RYAJCCVC9dL423Q__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN2&partnum=MSPM0L1306,


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	1 Description
	2 Required Peripherals
	3 Compatible Devices
	4 Design Steps
	5 Design Considerations
	6 Software Flow Chart
	7 Application Code
	8 Additional Resources
	Trademarks



