SLAAEF5A March   2024  – June 2025 MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Algorithm Introduction
    1. 2.1 Battery Basic Knowledge Introduction
    2. 2.2 Different SOCs and Used Technologies
      1. 2.2.1 NomAbsSoc Calculation
        1. 2.2.1.1 Coulometer With OCV Calibration
        2. 2.2.1.2 Data Fusion
        3. 2.2.1.3 Battery Model Filter
      2. 2.2.2 CusRltSoc Calculation
        1. 2.2.2.1 EmptySoc and FullSoc
        2. 2.2.2.2 Core Temperature Evaluation
      3. 2.2.3 SmoothRltSoc Calculation
    3. 2.3 Algorithm Overview
      1. 2.3.1 Voltage Gauge Introduction
      2. 2.3.2 Current Gauge Introduction
      3. 2.3.3 Capacity Learn Introduction
      4. 2.3.4 Mixing Introduction
  6. 3Gauge GUI Introduction
    1. 3.1 MCU COM Tool
    2. 3.2 SM COM Tool
    3. 3.3 Data Analysis Tool
  7. 4MSPM0 Gauge Evaluation Steps
    1. 4.1 Step 1: Hardware Preparation
    2. 4.2 Step 2: Get a Battery Model
      1. 4.2.1 Battery Test Pattern
      2. 4.2.2 Battery Model Generation
    3. 4.3 Step 3: Input Customized Configuration
    4. 4.4 Step 4: Evaluation
      1. 4.4.1 Detection Data Input Mode
      2. 4.4.2 Communication Data Input Mode
    5. 4.5 Step 5: Gauge Performance Check
      1. 4.5.1 Learning Cycles
      2. 4.5.2 SOC and SOH Accuracy Evaluation
  8. 5MSPM0 Gauge Solutions
    1. 5.1 MSPM0L1306 and 1 LiCO2 Battery
      1. 5.1.1 Hardware Setup Introduction
      2. 5.1.2 Software and Evaluation Introduction
      3. 5.1.3 Battery Test Cases
        1. 5.1.3.1 Performance Test
        2. 5.1.3.2 Current Consumption Test
    2. 5.2 MSPM0G3507, BQ76952 and 4 LiFePO4 Batteries
      1. 5.2.1 Hardware Setup Introduction
      2. 5.2.2 Software and Evaluation Introduction
      3. 5.2.3 Battery Test Cases
        1. 5.2.3.1 Performance Test 1 (Pulse Discharge)
        2. 5.2.3.2 Performance Test 2 (Load Change)
    3. 5.3 MSPM0L1306 and BQ76905
  9. 6Summary
  10. 7References
  11. 8Revision History

Capacity Learn Introduction

The capacity learn part has three functions:

  • First, is to update battery state, which is used to tell when to do OCV or SOC calibration.
  • Second, is to calibrate OCV and SOC. This does the calibration when the battery rest for some time and the voltage drop goes to an acceptable range.
  • Third, is to get NomFullCap and SOH using the method shown in Section 2.2.1.1.

The key output parameters of the function are listed in Table 2-2.

Table 2-2 Capacity Learn Key Parameters
Parameter Comment
iGuageDominationFlg When this flag is set, the u16MaxNomFullCap_mAh is generated and the SOC accuracy goes to an acceptable accuracy
iq15CaliSoc_DEC This parameter is used by Capacity learn part to record as the calibrated NomAbsSoc for further NomFullCap calculation, after ocvCaliFinishFlg is set. This is also used by Current gauge part to recalculate NomRemCap in the same cycle.
u16CaliOcv_mV Used to calibrate NomAbsSoc after ocvCaliFinishFlg is set.
u16NomFullCap_mAh This parameter is used by Capacity learn part to calculate SOH. This is also used by Current gauge part to calculate NomRemCap and discharge or charge cycles.
u16MaxNomFullCap_mAh This parameter is fixed once the first u16NomFullCap is get and used to calculate SOH.
iq15SOH_DEC Used to show the capacity decrease.
OSZAR »